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PREFACE

This book is an outcome of a course given at Harvard first by
G. W. Mackey and later by the author., The original course was
modeled on Weil’s book [48] and covered essentially the material
of that bock with modifications. As Gelfand’s theory of"Bariach
algebras and its applicability to harmonic analysi;,’gfi groups
became better known, the methods and content of/glie tourse in-
evitably shifted in this direction, and the preseng+velume concerns
itself almost exclusively with this point of view"Thus our devel-
opment of the subject centers around Chtapters IV and V, in
which the elementary theory of Banaghralgebras is worked out,
and groups are relegated to the suppofting role of being the prin-
cipal application. o

A typical result of this shiftsiit® emphasis and method is our
treatment of the Plancherel theorem. This theorem was first
formulated and proved as a“theorem on a general locally compact
Abelian group by Weil.; (lis proof involved the structure theory
of groups and was difﬁ‘cﬁl}. Then Krein [29] discovered, apparently
without knowledgeofWeil's theorem, that the Plancherel theorem
was a natural coiséquence of the application of Gelfand’s theory to
the L} algebrgf{;g the group. This led quite naturally to the form-
ulation of\th\"theorem in the setting of an abstract commutative
{Banachyvalgebra with an involution, and we follow Godement
[20)anltaking this as our basic Plancherel theorem, (An alternate
prodf/of the Plancherel theorem on groups, based on the Krein-
Milman theorem, was given by Cartan and Godement [8].)

The choice of Banach algebras as principal theme implies the
neglect of certain other tools which are nevertheless important in
the investigation of general harmonic analysis, such as the Krein-
Milman theorem and von Neumann’s direct integral theory, each
of which js susceptible of systematic application. It is believed,

however, that the elementary theory of Banach algebras and its
v
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applications constitute a portion of the subject which i{l itself is
of general interest and usefulness, which can serve as an introduc-
tion to present-day research in the whole field, and whose treat-
ment has already acquired an elegance promising some measure
of permanence.

The specific prerequisites for the reader include a knowledge of
the concepts of elementary modern algebra and of metric space
topology. In addition, Liouville’s theorem from the elementary
theory of analytic functions is used twice. In practice it witl
probably be found that the requirements go further thag\this,
for without some acquaintance with measure theoryg\geheral
topology, and Banach space theory the reader may find the pre-
liminary material to be such heavy going as to gvetshadow the
main portions of the book. This preliminary matérial, in Chapters
I-111, 1s therefore presented in a condense form under the as-
sumption that the reader will not be unfamiliar with the ideas
being discussed. Moreover, the topicstrgated are limited to those
which are necessary for later chaptersiho effort has been made to
write small textbooks of these .su‘bjécts. With these restrictions
in mind, it is nevertheless hoped that the reader will find these
chapters self-contained andhsufficient for all later purposes.

As we have mentionegd\tbove, Chapter IV is the central chapter
of the bock, containifighan exposition of the elements of the theory
of Banach algebyagiin, 1t is hoped, a more leisurely and systematic
manner than found in the first three chapters. Chapter V treats
certain specialBanach algebras and introduces some of the notions
and the‘o@n's.l of harmonic analysis in their abstract forms. Chap-
ter VI;S devoted to proving the existence and uniqueness of the
Hdab integral on an arbitrary locally compact group, and in Chap-
ters VII and VIII the theory of Banach algebras is applied to
deduce thfl: standard theory of harmonic analysis on locally com-
pact Abt?,han groups and compact groups respectively. Topics
covered in Cliha,pter VIl include positive definite functions and
the generalized Bochner theorem, the Fourier transform and
Plancl}erftl t._heo?em, the Wiener Tauberian theorem and the
Pontriagin duality theorem. Chapter VIIT is concerned with
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representation theory and the theory of almost periodic functions.
We conclude in Chapter IX with a few pages of introduction to
the problems and literature of some of the areas in which results
are incomplete and interest remains high.
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Chapter 1

TOPOLOGY N

§ 1. SETS ‘

1A. The reader is assumed to be familiar with)the algebra of
sets, and the present paragraph is confined ‘60 notation. The
curly bracket notation is used to name specific sets. Thus {a, &}
is the set whose elements are 2 and &, add){a,, - - -, an} is the set
whose elements are a4y, - -+, a,. However, sets cannot generally
be named by listing their elementsyvand more often are defined
by properties, the notation beingithat {x: ( )} is the set of all »
such that { ). We write “¢ & 47 for “a is a member of 4"
and “B < £ for “Bis a stibset of 47; thus 4 = {x: x € A4},

The ordinary “cup” ﬁid'“cap” notation will be used for com-
binations of sets: 4 .U,‘% for the union of 4 and B, and 4 N B
for their intersec{:i(aii;"u:zl A, for the union of the sets of the
countable familys{ 4.}, and (Vi-: 4. for their intersection.
More generallyy”if & is any family of sets, then Jicq A or
U {4: 4 £} is the union of the sets in &, and () {A4: 4 € 5}
is theirdntersection. The complement of 4, designated £, is
undéidtood to be taken with respect to the “space” in question,
that 1§, with respect to whatever class is the domain of the given
discussion. The null class is denoted by &. The only symbols
from logic which will be used are “=" for “if --- then” and
“&” for “if and only 1f.”

1B. A binary relation “<’” between elements of a class 4 is
called a partial ordering of A (in the weak sense) if it is fransitive
(@ <band b < ¢ = a <), reflexive (a < a for every a € A)

and if e <d and 6 < a = a=25 A 15 called a directed set
1
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under * <7 if it is partially ordered by “ <" and if for cvery @
and & € 4 there exists ¢ € 4 such that ¢ < g and ¢ < b. MNore
propetly, 4 in this case should be said to be directed downtcard;
there is an obvious dual definition for being directed upward.

A partially ordered set A is linearly ordered if either 4 < & or
b < g for every distinct pair ¢ and & € A. 4 is partially ordered
in the strong sense by “ <" if “ <” is transitive and irreficvive
(2 < a). In this case “<” is evidently a corresponding weak
partial ordering, and, conversely, every weak partial ordering has
an associated strong partial ordering. )

1C. The fundamental axiom of set theory which hds)equiva-
lent formulations in Zorn’s lemma, the axiom of choice and the
* well-ordering hypothesis will be freely used throughbut this book.
In fact, its use is absolutely essential for the¥shtcess of certain
abstract methods such as found in Gelfand's" theory of Banach
algebras. Many mathematicians feel dubiius about the validity
of the axiom of choice, but it mustye)remembered that Godel
has shown that, if mathematics is consistent without the axiom
of choice, then it remains consigfent if this axiom is added (and
similarly for the generalized\¢éntinuum hypothesis). Thus a
theorem which is proved .wi{h’ the aid of the axiom of choice can
never be disproved, uples$ mathematics already contains an in-
consistency which h@ﬁéthing to do with the axiom of choice.

Zorws lemma.,Fvery partially ordered set A includes a maxi-

mal linearly o@r&d subset. If every linearly ordeved subset of A
has an uppttibound in A, then A contains a maximum element.

Th(—;.;s}eénd statement follows from the first upon taking an
ppp\e)?hqund % of a maximal linearly ordered subset B. Then x
82 maximal element of 4, for any properly larger element could
be added to B without destroying its linear order, contradicting
th:e maximal character of B, We sketch below a proof of the
axiom of choice from Zorn’s lemma. Of these two properties, 1t
18 a matter of mere preference which is taken as an axiom s;nd
Twhlch 1 proved as a theorem. However, the proof given here
is much easier than the converse proof.
iD. Theorem (Axiom of choice

: )o I F 3 { . -
main D such that F(x) is a non.- J Bis a function with do

empty set for every x < D, then
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there exists a function [ with domain D such that f{x) € F(x) for
every x € D.

Proof. We consider a function to be a class of ordered couples
{(a graph) in the usual way. Let § be the family of functions g
such that domain {g) < D and such that g{x) € F(x) for every
x € domain (g). & is non-empty, for if x; is any fixed element of
D and yg 1s any fixed element of F(x,), then the ordered couple
(%0, oy 1s In F. (More properly, it is the unit class {(xg, yo)}
which belongs to 5.)

F is partially ordered by 1nclu510n, and the union of all the
functions (sets of ordered couples) in any lmearly;ordered sub-
family &, of ¥ is easily seen to belong to § and{t6'be an upper
bound of . Therefore § contains a maximalelement /. Then
domain (f) = D, since otherwise we can chobse a point x; < D
— domain (f} and an element yq & F(aqc.{;lso that f U {(xo, 7o)}
is a function of & which is properly lafges’ than f, a contradiction.
This function f, therefore, satisfies the Conditions of the theorem.

§ 2 “TOPOLOGY

2A. A family 5 of subsebs of a space (set) S is called a topology
for § if and only if; ™

(a) & and § are ihG;

(b) ifs, <5, theh U{4: 4 € 51} € 3; thatis, the union of the
sets of any sut(férﬂily of 5 is 2 member of 3;

(¢) the i{f:érs'ection of any finite humber of sets of 3 is a set
of 3.

If3y a.nd 8y are two topologies for 8, then ; is said to be weaker
thatt Gy if and only if 3; C 4.

% If @ is any family of subsets of §, then the topology gen-
erated by @&, 3(@®), is the smallest topology for § which includes a;
if 3 = 3(@), then @ is called a sub-basis for 5. It follows readily
that 4 € (@) if and only if 4 is & or §, or if A is a union (per-
haps uncountable) of finite intersections of sets in @. If every
set in 3 = 3(@) is a union of sets in @, then @ is called a dasis
for 3.

2C. If a topology 1 is given for §, then § is called a topological
space and the sets of 3 are the open subsets of S, If A4 is any sub-



4 : TOPOLOGY

set of §, then the union of all the open subsets of is called the
interior of A and is denoted int (4); evidently int (.7) 1s the
largest open subset of £, and 4 is open 1f and only if A = int (../f).

If p € int (), then A is said to be a neighborkeod of p. Neigh-
borhoods are generally, but not always, taken te be open sets.
A set of neighborhoods of p is called a neighborhood bLasis tor p
if every open set which contains p includes a netghborhood of
the set. ' '

2D. A subset of § is closed (with respect to the topology (@)
if its complement is open. It follows that g -and § are oltged,
that the intersection of any number of closed sets is clased, “and
that the union of any finite number of closed sets ig~dlosed. Jf
4 is any subset of 8, the intersection of all the closge sets which
include 4 is called the closure of A and is cofiithonly denoted
A4; evidently 4 is the smallest closed set impluding 4, and A4
is closed if and only if 4 = 4. Also, p @24 f and only if p &
int (A4"), that is, if and only if every gfen set which contains 2
also contains at least one point of 4.\J

2E. If 8§ 1s a subset of a topoloéidal space S, then a topology
can be induced in §; by taking'as open subsets of S, the inter-
section of §; with the open sibsets of §. This is called the re/a-
tive topology induced in $¢(by the topology of S.

2F, A fu_nction f Kh\bs’e domain D and range R are topologi-
cal spaces is saldnto" be comtinuous at po € D if f~HU) =
{p:f») € U} is(a heighborhood of po whenever U is a neigh-
?)o.rhoo.d OfoPQ),’ 1f f is continuous at each point of its domain,
1t 1s said torbe continnons (on D), It follows that fis continuous
if and onlydf /~*(U) is an open subset of D whenever U is an open

subsettof R, and also if and only if J7HE) 1s closed whenever €

ig-closed. .
_ Iff 18 one-to-one and both / and /! are continuous, then f
15 said to be-a homeomorphism between D and R. Evidently a
homeomorphism defines a one-to-one correspondence between the
topology %, for D and the topology 4 for R.

2G. The following conditions on
space S are obviously equivalent (

(a) Every family of open sets w
subfamily which covers . (

a subset 4 of a topological
b.y way of complementation):
hich covers £ includes a finite
Heine-Borel property.)
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(b) Every family of relatively closed subsets of .4 whose in-
tersection 1s &f includes a finite subfamily whose intersection is &.
(c) If a family of relatively closed subsets of .4 has the finite
intersection property (that every finite subfamily has non-void
intersection), then the family itself has a non-void intersection.
A subset A4 which has any, and so all, of the above three prop-
erties is said to be compact. It follows immediately from (b) or
(c) that a closed subset of a compact set is compact. _
2. Theorem. . comtinuous function with a compact domaim
has a compact range. O\

Proof. If {U,} is an open covering of the range R of.f, then
I/7Y(U)} is an open covering of the compact domaiirof #, and
hence includes a finite subcovermg If _1(UQQ}'\:&hose image
{U..} is therefore a finite covering of R. Thug R has the Heine-
Borel property and is compact.

2I. An indexed set of points {p.} is sauirb be directed {down-
ward) if the indices form a {downward)idirected system. A di-
rected set of pomts {24} converges to. i for every neighborhood
U of p there exists an index 8 su,ch \that p, € U for all a < 8.
All the notions of topology can Jbe ‘characterized in terms of con-
vergence. For example, a pomt p s called @ Zimit point of a di-
rected set of points {p.} Lf\for every neighborhood U of » and
far every index 8 theretexists o < § such that Pe € U. Then it
can easily be pmved #hat a space is compact if and only if every
directed set of poinfghas at least one limit pomt '

Little use willbbé made of these notions in this book and no
further dlSCB{Sin will be given.

§3 SEPARATION AXIOMS AND THEOREMS

3A\ A Hausdorff space is a topological space in which every
two distinct points have disjoint neighborhoods.

Lemma. If C is 4 compact subses of ¢ Hausdorff space and
P L C, then there exist disjoint open sets U and V such that p € U
and C < V.

Proof, Since § is a Hausdorfl space, there exists for every
point ¢ € C a pair of disjoint open sets 4, and B, such that
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p € A, and ¢ € Bo. Since C 1s compact, the open covering
{B,} includes a finite subcovering (B}, and the sers /7 = UB,,
U = 4, are as required.

Corollary 1. A compact subset of a Hausdorff spacc is closed.

Proof. By the lemma, if p € €, then p € T, so that € < G,
q.e.d.

Corollary 2. If 3, is a Hausdorff topology for &, 3x a 60??3?@5{
topology for § and 3, C g, then 3, = Ja.

Proof. Every 4,-compact set C is 3j-compact since L\e\l"}’\ A
covering of C is also a 3,-covering and so can be reduced. But
then € is %,-closed since 4J; is a Hausdorff topology.?.f Thus every
do-closed set 1s 3i-closed and 3, = 3. ~A°

3B. A topological space is said to be wormpgfif it is a Haus-
dorff space and if for every pair of disjoint/elesed scts 'y and Fs
there exist disjoint open sets U; and 0% such that /7 C Us,
i=1,2. N\

Theorem. 4 compact Hausdogff space is normal.

Proof. The proof is the saihe as that of the lemma in 34
For each p € F; there existy, by 3A, a pair of disjoint open sets
Up, ¥y such that p Q) and Fp < V,. Since Fy is compact,
the open covering [G% includes a finite subcovering { Uy} and
the sets U/, = U\'Upg; Uy = {7V, are as required.

3C. Urys?l'gxi’s‘ lemma. If Fy and Fy are disjoint clased sets m
a nomal@?&'s 8, then there exisis a continuous yeal-valued func-

tion 0{:.28\51;.5& thatf =Qon Fo,f=1on FLand 0 < f S 1.

M\]\?E@,’qf. Let V) = FY. The normality of § implies the exist-
‘enge of an open set 'y such that Fy < Vi Vy < V. Again,
there exist open sets ¥, and Vy such that Fy < V., Py € Vi

7% . % ! .
s C Vi Py ¥y, Continuing this process we define an
open set V, for ever

£ ¥ proper fraction of the form m/2", 0 < m =
2% such that Fy < 7,, 7, < ¥/, and V,cVifr<s.

We now define the function f as follows: f(p) = 1 if p is in
none o{ the sets 7,, and () = glb {r:p € 7} otherwise. Then
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f=1onF, f=00nFgand range () [0, 1. If0<s=1,
then A(p) < & if and only if »p € 7, for some » < 4, so that
{pi f(p) < b} = U,<s ¥+, an open set. Similarly, if 6 £ 2 < 1,
then f(p) > a if and only if p € 7, for some r > @, and {p:
fp) > al = U,»e ¥/, also an open set. Since the intervals
[0, &), (e, 1] and their intersections form a basis for the topology
of [0, 1], it follows that the inverse image of every open set is
open, i.e., that f is continuous.

3D. A topological space is Jocally compact if every point-has
a closed compact neighborhood. O\

A locally compact space S can be made compact by the addi-
tion of a single point. In fact, if S, = 8 U {pu}, where 2, is
any point not in S, then S, is compact if it is topolesjzed by tak-
ing as open sets all the open subsets of §, together with all the
sets of the form O U {p,}, where Ois an open)subset of § whose
complement is compact. For if {0} is amepen covering of S,
then at least one set O,, contains py, and its complement is there-
fore a compact subset € of §. The set9)0, N S are open in both
topologies and cover €. Thereforela finite subfamily covers G,
and, together with O,, this giveg-a finite subfamily of §0,} cover-
ing §,. Thus S, has the Heine Borel property and is compact.
Tt is clear that the originaktopology for S is its relative topology
as a subset of S, S, ds(ealled the one point compactification of S.

If § is a HausdorfRspace, then so is 8, for any pair of points
distinct from p, is\b;c*parated by the same pair of neighborhoods
as before, while'ps is separated from another point p by taking
an open se\taontaining p and having compact closure, so that

N

(0’ is an ogén subset of S, containing Pe-

3E.(THeorem. If § is a locally compact Hausdorff space and
if Cghd U are respectively compact and open sets such that C < U,
then there exists a real-valued continuous function on § such that
f=1omC,f=00n U and 0 S f= 1

Proof. The proof of 3C could be modified to yield a proof of
3E. However, it is sufficient to remark that the one point com-
pactification of § is a Hausdorff space in which C and U’ are dis-
joint compact sets, and 3C can be directly applied.
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§4. THE STONE-WEIERSTRASS THEOREM

4A, If § is compact, we shall designate by e(S) the set of all
complex-valued continuous functions on 8. If § is locally com-
pact but not compact, €(5) will designate the set of all complex-
valued continuocus functions on § which “vanish at infinity,” in
the sense that {p:] f(p)| = ¢} is compact for every positive e
If § 1s compactified by adding p, (as in 3D), then e(8) batames
the subset of €(S,) consisting of those functions whigh vanish
at p..; hence the phrase “vanishing at infinity.,” In eatlt’6f these
two cases G%(S) will designate the corresponding setvof all real
valued continuous functions. S

4B. An algebra A over a field Fis a vector.dphice over F which
1s also a ring and in which the mixed assoctative law relates scalar
multiplication to ring multiplication; = x(Ay) = nay). If
multiplication is commutative, then 4% called a commutative
algebra. P\%
Under the usual pointwise definition of the sum and product
of two functions it is evident that €(S) is a commutatve algebra
over the complex number field and that c®(8)
algebra over the rea] nymber field. IS is com
functions belong to these algebras,
a multiplicative ide\f;fity, If 8 is |
pact, then @(§) and €®(8) do not have identities. We remark for

later use thét}éR(S) is also closed under the lattice operations:
f U é-’:fn‘a?l"(f,g),f n £ = min (f,g)

4C\§emma Let A be a set of reql.

on’ga;.‘compaft SPace § which is closed under the lattice operations

;]\‘" g and f N & Then the uniform closure of A contains every
EOREINUOUS function gn § Whick can be

- @ . -
of points by 4 Sunction of 4, PProximated at every pair

Proof. X . .
(c)iof Let f bea tontinuous function which can be so approxi-
Mmated, and, given ¢, let Jo.e be a fy

. nction in £ such that | /(0
<%@i |€}<;n and D = foud | < . Letu,, = {9 fo.o(?)
varying p, the ra = {r: J2a) > ) — ¢} Fixing ¢ and
family of y open sets Uy, cover §, and therefore a finite sub-

¥ of them covers §, Taking the minimum of the corre-

is a commutative
pact, the constant
and they each therefore have
ocally compact but not com-

valued continwous functions
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sponding functions f, o, we obtain a continuous function f, in 4
such that f; <f+ e on § and f, > f — € on the open set 7,
which is the intersection of the corresponding sets 7, ,. Now
varying ¢ and in a similar manner taking the maximum of a
finite number of the functions £, we obtain a function £, in 4
such that f — e < fe < f+ € on &, q.e.d.

4D. Lemma. A uniformly closed algebra A of bounded real-
valued functions on a set S is also c!med under the lattice operationd,

Proof. Since fUg=max(/, 9= +g+]f— g]}/ﬁ'Z\lt
1s sufficient to show that | f| € A iffc 4. We may suppose
that [ f [| = maxes| f(p) | = 1. O3

The Taylor’s series for (f + ¢%)* about # = % Konvarges uni-
formly in 0 £ # £ 1. Therefore, setting # = x3there is a poly-
nomial P(x?) in »® such that | P(x?) — WA %] < e on
[—1, 1. Then | P©)] < 2¢, and [ QG2 {#* + %] < 3¢,
where Q = P — P(0). But (x4 J%— Ix| = ¢ so that
| G(x*) — | x|] < 4e on [—1, 1]. SmceQ contains no constant
term, Q(f2) € 4 and || Q(f%) — Lf 'l < 4e. Since A4 is uni-
formly closed, | f | € 4, q.e.d.

4E. The Stone-Weierstrass Theorem (see [46]). Let § be a
compact space and let A bevan algebra of real-valued continuous
Sunctions on S which separates points, That i3, if p1 7= pe, there
exists f € A such thafJ{p1) # f(ps). Then the uniform closure 4
of A is either the @igebra ©F(S) of all continuous real-valued func-
tions on 8, or elsé\éﬁe algedra of all continuous real-valued functions
which wzmﬁhz{a stngle point Py in S,

Proof. Suppose first that for every p € § there exists f € A4
such J;haf F(p) # 0. Then, if p; # p», there exists f € A such
that O F(p)) “ f(ps) 5% 0. But then, given any two real num-
bers ¢ and 4, there exists g €< 4 such that g(p,) = 2 and g(p,)
= 4. (For exa.mple, a suitable linear combination of the above
J and f? will suffice.) Since A is closed under the lattice opera-
tions (4D), it follows from 4C that 4 contains every continuous
real-valued function and .4 = €E(S).

There remains the possibility that at some point p,, every £ in
A vanishes. We wish to show that, if g is any continuous func-
tion vanishing at p,, then g € 4. But if the constant functions
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are added to 4, the first situation is obtained, and g can be ap-
proximated by a function of the form f + ¢, e — (4l <
¢/2, where f € A and ¢ is constant. Evaluating at p, we get
le| < ¢/2, 50 that |} f ~ gl < e Therefore, g € .7, q.eab.

§ 5. CARTESIAN PRODUCTS AND WEAK TOPOLOGY

SA. The Cartesian product §; X 82 of two sets & and Sa 4
defined as the set of all ordered pairs (p, ¢) such that p & St
and g € S5, <)

S X8 ={{p,g):p €S and g € S | O

Thus the Cartesian plane of analytical geometry 1s jtflC"Cﬂrt‘-’Sian
product of the real line by itself. The definitioms obviously ex-
tends to any finite number of factors: &, X $HX - -+ X S, 18 the
set of ordered #-ads {p1, - -, pn) such that’'p; € 5, for i = L,
«++, n. In order to see how to extendetiie definition further we
reformulate the definition just giverl, > We have an index set,
the integers from 1 to #, and, for e¥ery index i, a space . The
ordelred n-ad {(p1, ++ -, Py} is simply a function whose domain 18
the index set, with the restgic;;i’én that p; € S, for every index 7.

In general, we consider a'don-void index set A and, for every
index a € 4, we s

: uppdse given a non-void space S, Then the
Cart-esmn product I%}EA S. 18 defined as the set of all functions
P mth-domain @'Sﬁch that ple) = p, < S, for every a € A.
The axiom of ¢licice (1D) asserts that J S, is non-empty.

5B. Let A} be a collection of functions whose ranges S, are
topolog{&i“spfices and which have a common domain §. 1f § s
to bE: t’o_];;ologlzed so that all of these functions are continuous,
\;hglg /a_*(Us) must be open for every index o and every open

1;1 set Uy of So. The topology generated in § by the totality of
a h‘such sets as a SI:Ib—basis is thus the weakest topology for § in -
w ICil all the functlfmsfq are continuous, and is called the weak
]t)qpo ogy generated in § by the functions { £}, In defining a sub-

asis for § it is safficient to
i : use, for each a, only sets U, in a sub-
basis for S§,. Tt is clear that: P :

IfSlc‘S’mzdf’f_;rh . .
« ¢ restriction of f, to Sy, th -
pology generated in by the fu??ctz'omf I 1y then the weak to

{50 is the relativization to
Sy of she weak topology generated in S by the functions { f,}.
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5C. The function f, which maps every point » in a Cartesian
product & = [, S, onto its coordinate p, in the ath coordinate
space 1s called the projection of § onto §,. If the spaces S, are
all topological spaces, then we shall certainly require of any to-
pology in & that all the projections be continuous, and § is con-
ventionally given the weakest possible such topology, that is,
the weak topology generated by the projections.

If M is any subset of [1a Sey then the relative topology induced in

M by the above topology in {la Sa is the weakest topology in whickh
o . AN
the projections fa, confined to M, are all continuous. N\

5D. Theorem (Tychonoff}. The Cariesian produd“@“"'é}. famé{y
of compact spaces is compact. '\;"

Proof, after Bourbaki. Let 5 be any familyJefclosed sets in
§ = JI. S. which has the finite intersection/property (that the
intersection of every finite subfamily of §jsshon-void). We have
to show that the intersection of ¥ is nor ¥61d.

First we invoke Zorn’s lemma to,,e;;s’:.tend ¥ to a family Fy of
(not necessarily closed) subsets of i which is maximal with re-
spect to the finite intersection property. The projections of the
sets of &y on the coordinate gpace S, form a family F4* of sets in
that space having the finife)intersection property, and, since S,
is assumed to be compac\f}\there 1s a point p, which is in the clo-
sure of every set of g \Let p be the point in § whose ath coordi-
nate is p, for each(a” We shall show that p is in the closure of
every set of § ,:ai}h therefore 1s in every set of &, which will finish
the proof, J{r&edrdingly, let U be any open set in § containing p.
Then thergrexists (by the definition of the topology in §) a finite
set of im\’d;\cés 1y + vy 0y, and opensets U, © 8,, 7 =1, .-+, n,

such that
2 € MNif MU € T,

where £, is the projection of § onto §,. This implies in particu-
lar that p,. € U,, and hence that U, intersects every set in
Fo™. But then £, }U,) intersects every set of 5, and so be-
longs to 5y (since 5, 1s maximal with respect to the finite inter-

N\

section property). But then [1/e '(U.) € %o, for the same -

reason, and so U € Fy. Thus U intersects every set of g, and
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since U was an arbitrary open set of § containing p it follows that
2 is in the closure of every set of %, g.e.d.

SE. The Cartesian product of a family of Hansdorff spaces is a
Hausdorff space.

Proof. If p 5 g, then p, # ¢, for at least one coordinate oty
and, since S, is a Hausdorff space, there exist disjoint open scts
Ay and B, in §, such that Pa € Ay and g, € B,. Bur_then
fa= (e} and £,7Y(B,) are disjoint open sets in J], &, conthain-
ing p and ¢ respectively, q.e.d. R )

SF. The following lemma will be useful in Chapter’ \’T

Lemma. Let f(p, q) be a continuous Junction 9?{'}/;3 Cartesian
product 81 X 83 of two Hausdorff spaces 8, a?rdd’S’}, and let C and
O be respectively a compact subset of Sy and an open set in range (f).
- Then the set W = la:f(p, ¢ € 0 for aﬁfa'{}}'(?] 15 open in S

Proof. This proof is a third application of the device used to
prove 3A and 3B. If g0 € 3 is fixed and p € C, there is an
open set U X ¥/ containing (p, ¢} on which AP, 9) €O, But
(, being compact, can be COV.@I;GH by a finite family Uy, ooy Un
of such sets U, and if 7~ =7 7. is the intersection of the corre-

STQ[:J;lsd;?g Ie’:;;tsshwe {l;‘a?\e f@, 9 €0 for g € 7 and p e C
fo & W, themhere exists an open set # such that 4
C W, proving that'# is open. ) s

€ one point compactification of § and 5s

ions of § extend to 3.. nu-
s o . i 0 Jg-continu
hctions on §, which vanish at po. If 3, is the weak topology

by deﬁnitionm bgl the fa}mily of extended functions, then 3, < 3,
: . 80 31 18 a Hausdorff topology, for the extended

Therefore, 5, = 3,



Chapter 11

BANACH SPACES -

§ 6. NORMED LINEAR SPACES sy

. . AN
6A. A wnormed linear space is a vector space ae¥er the real num-
bers or over the complex. numbers on whicli\is defined a non-
negative real-valued function called the m\?‘@ {the norm of x be-

ing designated || ||} such that N
[xfl =0 e =0
|2+ 21l =[xl + {| ol (triangle inequality)
2] = [2|glx]] (homogencity).

A normed linear space 'iﬁ:;%enerally understood to be over the
complex number field, e real case being explicitly labeled as a
real normed lineapyspace. A normed linear space becomes a
metric space if the distance p(x, y) is defined as || ¥ — y ||, and
it is called a Bdwach space if it is complete in this metric, i.e., if
whenever [[Niw’— .|| — O as #, m — w«, then there exists an
element asuch that || x, — x| — 0 as #w — oo,

Thelreader is reminded that the (metric space) topology in
question has for a basis the family of all open spheres, where
the sphere about x¢ of radius 7, S(xg, 7), is the set {x: || x — xg |
< r}. The open .spheres about %, form a neighborhood basis
for xg. ' :

It follows directly from the triangle inequality that ||| » || —
|5 [l] ]| x —yl|, so that || » || is a continuous function of x.

Euclidean »-dimensional space is a real Banach space with the

norm of a point (vector} x taken to be its ordinary length (3 »2) %,
13 '



i4 BANACH SPACES

where x;, -+, x, are the coordinates (or components) of x. It
remains a Banach space if the norm of ¥ is changed to x|, =
(22 ] % [7YV for any fixed p = 1, though the triangle incquality
1s harder to prove if p = 2. These Banach spaces are simple
examples of the L? spaces of measure theory, whose basic theory
will be developed completely (though concisely) in Chapter 111,
We mention now only that I” ig the space of all “integrable”
real-valued functions f on a fixed measure space such thatthe

integral f | /P is finite, with || £ ||, = ( f | / [n)“”. Afwther

example of a Banach space is the set of all bounded \continuous
functions on a topological space 8, with || £ ||, = lab¢] /() |.
This norm is called the uniform norm becauselfiy’ — / in this
norm (ie., || f» — 71| — 0) if and only if theMunctions f, con-
verge uniformly to f. The fact that this normed linear space is
complete is equivalent to the theorem ghat the limit of a uni-
formly convergent sequence of bounded’continuous functions is
itself a bounded continuous functiag, >y

GB'. The following theorem exhi‘bit.s one of the most important
ways in which new Banach spaces are generated from given ones.

| Theorem. Jf A1 is a“c@.red subspace of a normed linear space
X, tﬁefe the quotient vedigr space X/M becomes a normed linear
$pace if the norm of 4 poset Y is defined as its distance Srom the ori-
gin: |y = glbi“x lix €5} Ir x 45 complete, then X /M is

complete, A\
N
Proof. \Kitst, 1} 5 | = 0if and only if :
“ihe th
K Y s.u%h that |[ Xn “ = Q. Sincey erc exists a sequence

¥ is closed, this will occur

if andenly if 0 € y, 5o that 17| =0 o y =M. Next||y +

.}.’2““;*_4 glb {|] w; 4w, |: %, 1y Xy .l < X
Pws ||} = ghb {[] w; |]: #, EE_;':]J}} + gl%ﬁ!lx;]]:glfg {él: ;2[}1 i

ol + 132 ]l Similar] - _
4 normed Iinzear spatx:.ar v I'= I [”J' ||, and X/M is thus

If_ l.}'n] 1s a Cauch

at || ynys —yall <27

€ ¥» such that
3 for P(xm ,}’n_].]) = P(j'ﬂ, .yn+l) < 2-n If
auchy sequence {%.} has a limit %o, and if

|| x'n'H T Xy H < 3m
X is complete, the C



BANACH SPACES 15

Yo is the coset containing xo, then || yu — yol| = 1] %0 — 2o Il so
that {y,} has the limit yo. That the original sequence converges
to yo then follows from the general metric space lemma that, if a
Cauchy sequence has a convergent subsequence, then it itself is
convergent. ‘Thus X/M is complete if X is complete.

§7. BOUNDED LINEAR TRANSFORMATIONS

7A. Theorem. If T is a linear transformation (mapping) af\ »
normed linear space X into a normed linear space Y, then e Yol
lowing conditions are equivalent: O

1) T is continuous. N

2) T is continuous at one point. ?

3) T is bounded. That is, there exists a positive donstant C such

K4y
that || T(x) || £ C| x| for all x € X.

Proof. If T is continuous at xq, then t e is a positive con-
stant B such that [| T(x — xo) || = || T — T(x) [l <1 when
|| % —xo || £ B. Thus || T || = ],;."v;;’henever | 2]l < B, and,
for any nonzero y, || T(y) [| =¥ l/BI TGB/l[ 7 ) || =
|5 |I/B, which is 3) with € = LB But then || T(x) — T(x1) ||
= || T ~ %) || £ Cll & — 2] < e whenever || & — I < ¢/C,
and T is continuous at evesj point ;. _

7B. The norm || T []%«fa continuous {bounded) linear trans-
formation is defined a8the smallest such bound €. Thus || 7|

= Iub, . || T6) |4 ], and it follows at once that:

The set of a.{Lé:a}ihdea’ linear transformations of X inte Y forms
itself a norme%[i?zear space. If Y is complete (i.e., a Banack space),
then so is ‘z}uf; space of mappings.

FQ{\{Xamplc, if {7} 1s a Cauchy sequence with respect to the
abovedefined norm, then {Tu(¥)} is a Cauchy sequence in YV
for every » € X, and, if T(x) is its limit, then it is €asy to see
that T is a bounded linear transformation and that | Tw - T 1
— 0,

7C. The set ®(X) of all bounded linear transformations of X
into itself is not only a normed linear space but is also an alge-
bra, with the product 7,7, defined in the usual way: T1To(x) =
T(T3(%)). Moreover, || Ty T2 || £ || Ty [[-l| T2 ||, for || T4 T, ||
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— b [| T Al [l S tab () 75 L 7l e 2 x| =
{| Ty |||l T=]|. Any algebra over the complex numbers which has
a norm under which it is a normed linear space and in which the
above product inequality holds is called a wormed alvchra. A
complete normed algebra is called a Banach algebra. Thus &(X)
is a Banach algebra if X is a Banach space.

Another example of a Banach algebra is the space ©(8) of
bounded continuous functions on a topological space &, witl{“the
uniform norm || f le = lub {| f) i € St Itis casily ghetked
that () is a normed algebra, and since a uniformly eanveraent
sequence of continuous functions has a continucug lutit, it fol-
lows that e(S) is also complete, and therefore is a Banich algebra.

"D. Theorem. If N is the nullspace of a Boanded Fincar trans-

Sormation T, then || T remains unchanged When T is considered
a5 & transformation with domain X /N. \\ '
Proof. T can he considered to k& defined on X/N since, if
#1 and %3 belong to the same caset y, then x; — x; © A" and
TG) = T(xs). Let ||| T [|| be.the new norm of . Then

e : e ”J’ “ "..’\y#o zCy “ X “

L\ = lub M =1 7.
‘ T

TEA notmetl dinear space X is said to

oo ar sp be the direct sum of
o spaces Mmd N 1fX is algebraically the direct sum of A7 and
#:4¥5 and 1f the projections of ¥ onto A and N are both continu-

“ous (LeSithe topology in X is the Cartesian oduct topology of
M XD 1f X is an product topology
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of X. This is a special case of the theorem that a uniformly con-
tinuous function defined on a dense subset of a metric space has
a unique continuous extension to the whole space. An easy di-
rect proof can be given, as follows. If 7 is defined on the se-
quence {x,} and &, — w, then the inequality  Tln) — TCen) ||
S [ T|-[] % — % || shows that the sequence {T(x,)} is Cauchy
and hence convergent. If its limit is defined to be T{xy), it is
easy to verify that this definition is unique (and consistentdn
case T is already defined at x;) and serves to extend T to, the
whole of X. _ PR\

7G. This section is devoted to the important closed” graph
theorem. Here, for the first time, it is essential thdt, the spaces
in question be Banach spaces. S,

Lemma 1. Let T be 2 bounded linear transforipation of a Banach
Space X into a Banach space Y. If the imdge under T of the unit
sphere §1 = 80, 1) in X is dense in .gdif}% sphere U, = §(0, r)
about the origin of Y, then it includes U

Proof. Theset 4 = U, N T(Syh1s dense in U, by hypothesis.
Let 7 be any point of U,. Given any & > 0 and taking Yo =10,
we choose inductively a sequence y, € ¥V such that Ynil — Ya
&g and || ynps — 7 /=88ty for all # = 0. There exists,
therefore, a sequence_ {%yy such that 7(%,11) = yuuy — ¥ and
Hwnis]] < & If & = 27 % then |7 < 1/(1 — & and
T(®) = 3.7 (ya >¥w_1) = 7; that is, the image of the sphere of
radius 1/(1 — apeovers U,. Thus Ura—p © T(Sy) for every 8,
and hence (i\ia“’_f‘(é‘l), g.e.d.

O\

Lern.n;g}Z. If the image of S| under T is dense in no sphere of
Y, thefhe range of T includes no sphere of Y.

Proof. If T(S;) is dense in no sphere of Y, then (s, =
{T(0) ]| % || < n} = #7(Sy) has the same property. Given any
sphere § C Y, there exists therefore a closed sphere S(yy, ) € 8
disjoint from 7(§,), and then, by induction, a sequence of closed
spheres S(y,, 7.) < S(¥u_1, 72_1) such that S(ny 72) 1s disjoint
from 7(S,). We can also require that 7o = 0, and then the
sequence {y,} is Cauchy. Its kimit y lies in all the spheres
S(¥as #a) and hence in none of the sets 7(S5,). Since U. T(S.)
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= T(.X) we have proved that T(X) does not include any sphere
S cv,qed

Theorem. If T is a one-to-one bounded linear transformation
’ \_1 N
of a Banach space X onto a Banack space Y, then T is bounded.

Proof. Lemma 2 implies that T(S,) is dense in some sphere in
Y, and therefore, by translation, that 7%(S,) is dense in a :wp.here
Ue. But then U, € T(85) by Lemma 1, 77'(U,) c 8»¢and
T £ 2/r, qed.

O\
Corollary. If T is a linear transformation of a Ifm}}:fb space

X into a Banach space Y such that the graph of }f"'::‘.rf«dmw! {(as a

subset of the Cartesian product X X Y), then T bounded.

‘Proof. The graph of T(= {{x, Tx): x € X}Y'is by assumption
2 Banach space under the norm | ey B¥l| = || % ]| + |1 7% |-
Since the transformation (x, Tx) —yxNs norm-decreasing and
onto X, it follows from the theorem(that the inverse transforma-

tion ¥ — {x, Tx) is bounded and im particular that 7 is bounded,
q.e.d. \\

This is the closed graph t]iém:em.

§'\8. ' LINEAR FUNCTIONALS

8A. If Yis the somplex number field (with ||y || = |y ]), the
space of continfious linear mappings of a normed linear space X

into Y i called the conjugare space of X, denoted X*, and the
individ’ Mappings are called Jinear functionals. Since the com-
plex p];lh er field is complete, it follows from 7B that

..\".

~C X* is always 4 Banach space.

\f F &€ X*and N is the hullspace of 7, then X/ is one-dimen-
stonal, since ' becomes One-to-one when transferred to X /N (see
7D). Otherwise

stated, the closed subspace &V has deficiency 1 in

8B, .The well-known Hahn-Banach €Xtension theorem implies
the existence of plenty of fun

. ctionals. We shall use the notation
[4] for the linear subspace generated by a subset .4 of a vector
space.
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Theorem (Hahn-Banach). If M is a linear subspace of the
normed linear space X, if F is a bounded Linear functional on M,
and if xg is a point of X not in M, then F can be extended to M -
[x0] without changing its norm.

Proof. We first give the proof when X is a real normed linear
space. The problem is to determine a suitable value for a =
Fxo); after that the definition F(x + Awg) = F(x) + Ae for every.
x € M and every real \ clearly extends F linearly to M +[x3]-
Assuming that || /|| = 1, the requirement on « is that | K(x) +
M| < |[ &+ Meo|| for every x € M and every realMA = 0.
After dividing out A, this inequality can be rewrittgh

~F(e) = [y + w0 [ £ @ £ —Plag) =3 + 50 |

for all x1, %, € M. But Flx)) — Fleihs Flwy — %) <
fao — wof] < || ws F 20l + || %1 + %4 {[s<s0 that the least up-
per bound of the left member of the displayed inequality is less
than or equal to the greatest lowe;:fb’bund of the right member,
and « can be taken as any numhetin between.

We now deduce the complex-8ise from the real case, following
[6]. We first remark that a egmplex normed linear space becomes
a real normed linear space:i}scalar multiplication is restricted to
real numbers, and tha:t\t}le real and imaginary parts, G and H,
of a complex linear fanctional F are each real linear functionals,
Also Gix) + iHY = Flix) = iF(x) = —H(x) + iG(x), so
that H(x) = J@(ix) and Flx) = Gx) — iGlix). If | Fl| =1
on M, then.ﬁ(@“ = 1 on M and, by the above procf, G can be
extended o’ the real linear space M -+ o] in such a way that
|| G2 If we similarly add jxo, we obtain the complex sub-
space, generated by M and x, and the real linear functional G
defined on it. We now set F(x) = G{x) — iG(ix) on this sub-
space; we have already observed that this is correct on M. Fis
obviously a real linear functional on the extended space, and in
order to prove that it is complex linear it is sufficient to observe
that Flix) = G(ix) — iG(—x) = HG(x) ~ iG(ix)] = iF(x).
Finally, if x is given we choose ¢¥ so that ¢2F (%) 1s real and non-
negative, and have | F(x) | = | F(e%s) | = G(¢%x) < [ e |} =
| #]], so that || || = 1, q.e.d.
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8C. It follows from Zorn’s lemma that a functional ¥ such as
above can be extended to the whole space X without increasing its
norm. For the extensions of F are partially ordered by inclusion,
and the union of any linearly ordered subfamily is clearly an
extension which includes all the members of the subfumily and
hence is an upper bound of the subfamily. Therefore, there ex-
~ Ists a maximal extension by Zorn’s lemma. s domain must be
X, since otherwise it could be extended further by 8B. ~\

In particular, if xg 15 @ non-zero element of X, then there cxiitd a
linear functional F € X* such that F(xq) = || %o || and || £3= 1.
For the functional F(hx,) = M %o || is defined and of horm one
on the one-dimensional subspace generated by xopducd /7 can be
extended to X as above. R4

Also, if M is a closed subspace of X and x NG, then there ex-
ists a functional F € X* such that || F || N5 F =0 o M and
Fxo) = d, where d is the distance from xet’ M. For if we define
F on {xol + M by F(dwy — %) = M, then F is linear and |} F]
= lub | M|/l e — x| = ub,eisd/|| o — x|| = d/glbcn
l#o—a| =d/d=1. We themvextend F as above.

Let M* be the set of all F . &\X* such that F(x) = 0 for every
-;rE }4?/1’-_ ﬂi{J‘ s };:alled th;’{’anm‘&z’!aror of M. The above para-

AP tmplies that ¥ @M if and only if F(x) = O for every
F e M. This facg might be expressed: (]él)J_( l M. /

8D. Theorem. »Fhere is 4 natural norm
(imbedding) x 35w

-preserving isomorphism
; N of a normed linear space into its second con-
Jugate spacg-X** defined by ¥**(F) = F(%) for cvery F € X*.

Pro?f;s fis ﬁ_xed and F varies through X*, then »**(F) =
| F(x'),\ils' clealy linear on X*. Since | #**(F) | = | Flx) | £
!FHH %1, we see that x* i bounded, with || x**{| = || #||.

Sirice by 8C we can fing F such that F(x) = -

, | %l and || F || =1,
lt_fgljows that |[ || = lubg | £y |/]] F|l 2 |l#]|. Therefore,
”"" I =-”x“, q.e.d. -

Generally X is

a pro L
that X is reflexive. proper subspace of X if X = X** we say

sp:cE&. ;E_t Tbe 2 bounc.ied linear mapping of a normed linear
functionalln;? 2 normed linear space V. For every G € V%, the
defined by F(x) = G(T(x)) is clearly an element of
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X*. The mapping T* thus defined from Y* to X* is evidently
linear; it is said to be the adjoint of T. 1f X is imbedded in X**,
then T™¥ is an extension of 7, for if x € X and G € Y*, then
(T**x*)G = x*N(T*G) = (T*G)x = G(Tx) = (Tx)**G, showing
that 7H*(x*¥) = (Tw)**, '
Since [ F(x)| = [G(T@) | = ||Gl-|| 71| ||, we see that

|| TGl <= || Fi| = |G |l-[| T|l, and hence T* is bounded with
| T*{] = || T||. Since T%* is an extension of 7, we have cow.
versely that || 77{] < || 7**|| < || 7*||. Therefore, || 7* H\:

| Iy

8F. We shall need the following theorem in Chaptez:;,fl";\

Theorem. [f [F.} is a sequence of bounded linebf)functionals
on a Banackh space X such that the set of numb¥kd){| F.(x) |} is
bounded for every x € X, then the set of norms {\U Fo |} is bounded.

N

Proof. It is sufficient to show that thegsequence of functionals
is bounded in some closed sphere, FFor iIN7.(x) | £ B whenever
2 € Slxg, 7) = {x: Hx — x| < ?'}:t.h"?h | Fo(y) | = [ Fuly — x0) |
+ | Folwo) [ £ 2B 3f || y [} < 7, anlthe norms || 7, || have the
common bound 2B/7. N\

But if {#,} is unboundedd every sphere, we can find induc-
tively a nested sequence 4Dclosed spheres {§,,} with radii con-
verging to 0 and a subseduence {Fun) such that | F, (x)| > m
throughout §,. We.da' this by first choosing a point 2P,,, in-
terior to S, and &\inctional F, . such that | FroiBmga) | >
m -+ 1, and the,n;:?}{'is inequality holds throughout a sphere about
Pm+1 by thq{én'tinuity of .. Since X is complete, there is a
point xy i8N} S, and {| F, (xo) |} is bounded by hypothests,
contradi€ting | #,,(xo) | > m. Therefore, {F,} cannot be un-
bounded in every sphere, and the proof 1s finished. '

Corollary. Jf {x.} is a sequence of elements of a normed linear
space X suck that {| F(x,) |} is bounded for cach F € X*, then the
set of norms {|| %, ||} is bounded. For X*is a Banach space and
¥, € X™* by 8Dj the above theorem can therefore be applied.
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§9. THE WEAK TOPOLOGY FOR X'*

9A. The conjugate space of a normed linear space X is a set
of complex-valued functions on X and, therefore, 1s a subset of
the Cartesian product space [[,cy Cx, where the clements ¥ € X
serve as indices and the coordinate space C, is the complex plane,
The relative topology thus induced in X* is called the weak to-
pology for X*, We know (see 5C) that it is the weakest topdlogy
for X* in which the functions x** (the projections of X#'%en the
coordinate spaces) are all continuous. The sets of“the” form
{F: | Fl) ~ Mo | < ¢}, depending on x, Ao, and e-form a sub-
basis for the weak topology of X*. o

Z" £
LN
O\

ng Theorem. The strongly closed unit\.fpifere in X* is com-
pact in the weak topology, \ N

Proof. The strongly closed unit :sﬁhere is, of course, the set

§ = [F | Fll= 1}. The valqc;‘s':zissumed by these functionals

at a point x € X are complexthumbers in the closed circle §; of

radllus 2], Sisthusa subsét of the Cartesian product [[.cx Sz

which, bY‘ the Tychonofftheorem (5D}, is compact. It is there-

fore sufficient to sh W that § is weakly closed in J[.cx Sa Ac-

i}‘irdmgl}f: let G be.a function in its closure. Given x, y, and ¢

[; ls;t {F_;I??\(x)'~ G| <ef N{F:|F(3) =GO [ < ¢ N

Gl b T Gl +7) | < ¢} is open in [[, §. and contains

(), and therefore contains an element ¥ € §. But F(x +3)

= F (9?1'}?*“@)_, s0 that | G(x) + G(y) — G(x + 9) | < 3e Since

R Eﬁé%bltr » 1t follows that G is additive. Similarly it follows

&Y (%) = MG(x) and that |Gy | = || » l. Therefore, G € S
e Prg‘é‘ng that § is weakly closed in T, 82, q.ed.

. -,r{em.s.a%‘:ieﬂ?re a number of interesting and important theo-

i this book b et Wi"_-k topology in X* which will not be needed

. ests of generalu dw ich. perhaps ought to be sampled in the inter-

ton. [t wa cducation. We confine ourselves to one such situ-

3 Seen 1n 8C that a cloged subspace M < X is the

annihilator of it .
X $ an S .
Zation can be wihilator (A7 = M**), A similar characterl-

weak topologygwen to subspaces of X* which are closed in the



BANACH SPACES 23

Theorem. Let M be a subspace of X*, let M*: be the intersection
of the nullspaces of the functionals in M and let (M*)" be the set
of all functionals in X* which vanish on M*. Then M = (M*)*
if and only if M is weakly closed.

Proof. For every » € X the functional x**(F) is by definition
continuous with respect to the weak topology on X*, and there-
fore its nullspace is weakly closed. It follows that, if A4 is any
subset of X, then the set of functionals which vanish on A is an
intersection of such nullspaces and hence weakly closed. In pdr3,
ticular (M1)* is weakly closed. Since M  (M1)7, ther€ e~
mains to be shown only that, if F; is not in the weak closurépf M,
then F, is not in (M1)*, that is, that there exists ik, € M*
such that Fy(xe) # 0. But if Fj is not in the weak closure of M,
then there exists a weak neighborhood of Fy not ¥itersecting M,
i.e., there exists ¢ and ¥y, - - -, ¥» such tha.t.{io\G € M satisfies
| Glxs) — Fo(ws) | < e for every i = 1, - 2y, The elements x;
map M onto a subspace of complex Eiichdean #n-space G —
(G(xy), + -, G(xs)), and no point of:t]iis subspace is in an e-cube
about the point (Fy(x1) - -, Foled). In particular the subspace
does not contain this point and\s of dimension at most # — 1,
so that there exist constantsf:.s\l, -+, ¢q such that ) ¢,G(x;) = 0
for every G € M and ‘S\chg(xi) = 1. Taking x¢ = 2.1 ¢,
these conditions becoms Glxe) = 0 for every G € M and Fo(xo)
= 1, proving tha Fyis not in (M)

Remark: 1t g~pessible, by refining this type of argument to
show that, ifs‘&"is such that its intersection with every strongly-
closed sphgi',é" is weakly closed, then M = (M*5)*. (See [L1])

>
§10. HILBERT SPACE

10A. A Hilbert space H is a Banach space in which the norm -
satisfies an extra requirement which permits the introduction of
the notion of perpendicualarity. Perhaps the neatest formulation
of this extra property is the parallelogram law:

@) e lP e =yl =2l = lE 1
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A scalar product (x, y) can now be defined,
2) 4(x, )
=[x tyP=lle =y P +ile+ i[> —dlx— iy |

and rather tedious elementaty calculations vield the laws:

(3 | (w1 + 23, 3) = (%1, 3) -+ (%2, 3);

@ (M ) = N 905 ‘ S
(5) (% 3) = (3, #); ©
6) e, 2) >0 if x#0Q. y

The additivity condition (3) can be proved by tecating the real
and imaginary parts separately, and applyingthe parallelogram
law to four sums of the type || %; + x5 -+ ¥ ||?\\-}- 2y — x5+ 3|2
to obtain the real part. Repeated appli\&’ations of (3) lead to
(m/2%)%, 3) = (m/2%)(x, y)}, and hence;\By continuity, to (ax, ¥)
= a{x, y) for positive . On the othe¥ hand, it follows from di-
rect inspection of (2) that (—a\¥) = —(», y) and (ix, ¥) =
i(%, ¥), completing the proofsof *(4). The remaining two laws
also follow upon direct inspection.

10B. In the applicatipns,” however, the scalar product is gen-
erally more basic tha‘\xkifche norm, and the usual development of
the theory of Hilbats, space starts off with (3)—(6) as axioms, the
parallelogram law’now following at once from the definition of
il % 1| as (v, £ We also obtain the Schwarz inequality,

s

DAY Twals sl

with foliiality only if ¥ and y are proportional, from the expansion
'g‘,(x o 7\_)’, ¥ = )\_}’) = (x: x) - 7\()’: .X') - i‘(x).y) + l A |2(y1 -j’,)’
b_ setting A = (v, #)/(y, x). If (y, x) = 0, the inequality is
trivial. Again, substituting from the Schwarz inequality in the

expansion of || x + y ||2 = (x + 5, » + ¥}, we obtain the triangle
tnequality:

(8) ety il + 5],

“_rith equality only if x and y are proportional, with a non-

nega-
tve constant of proportionality, Thus # is a normed

linear
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space, and now, rather inélegantly, the final assumption 15 made
that _
(9 H is complete in the norm || # || = (x, x)*.

Two elements x and y are said to be orthogonql if (x, v) =0,
An immediate consequence of orthogonality is the Pythagorean
property: || +y [|* = [« [[* + |[ 7 [[*

10C. Theorem. A closed convex set C contains a unigue eles
ment of smallest norm.

AN
Proof. Let 4 = glb {||#{|: x € €} and choose x, € $uch
that [| #. {| | d. Then (v, + #a)/2 € C since Cis co:avex and
$0 || #n + ¥ || 2 24.
Since [| #n — s [[* = 2(]] wa |I* + Lo [[*) 23 % -+ 2 12 by

the parallelogram law, it follows that || » n SN Em || = 0 as n,
m — e, If w=lima, then || x| = x| =4 If «
wete any other element of € such that e = 4, then (x + x0)/2

would be an element of € with norm’ less than 4 by (8) above.
Therefore, xq is unique.

R

10D. Theorem. If M isa cla.red subspace of H, then any ele-
ment x € H can be uniguely@xpressed as a sum x = xy -+ %2 of an
element xy € M and an, ze}'égﬂent xo L M. The element x; is the
best approximation to x\&}r elements of M.

Proof. If » & U the coset {x — y:y € M} might be called
the hyperplaneythrough x parallel to M. It is clearly convex
and closed, @l hence contains a unique element x — ¥y closest
to the orzg&h‘ (10C). Setting x5 = x — X1, we have oz — Ay [
2 || xy H2 for every y € M and every complex A. Setting A = .
(2N Ay, v) and expanding, we obtain —| (¥, ¥2) | 2 0, and
henc& (y, x,) = 0. Thus »y L. M. This argument can be run
backward to deduce the minimum nature of || #s || from the fact
that x, 1 A, which proves the uniqueness of the decomposition.
Of course, this can easily be proved directly.

10E. The set of elements orthogonal to M forms a closed sub-
space Mt and the content of the above theorem is that H is the
direct sum of M and ML, The element x, is called the projec-
Hon of x on M, and the transformation % defined by E(x) = x1
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is naturally called the projection on M. It is clearly a bounded
linear transformation of norm 1 which is idempotent (E? = E).
Its range is M and its nullspace is M*.

Lemma. If A is any linear transformation on H such that, in
the above notation, AIM) < M and ANM*) < M*, then AE = EA,

Proof. If #, < M, then Ax) € M, so that .7lx, = Ax, =
Edxy. Ifwy € M*, then Axy € M*, so that A/Fxs = 0 = Edx,.
Since any x can be written #; - %5, it follows that Alix = Edx
for all #, q.e.d. M

If M, and M, are orthogonal closed subspaces, the Rythagorean
property || #; + 1, ||% = || %, 12+ || 2 |12 for a paie of clements
#1 € My and x, € M, leads easily to the contllision that the
algebraic sum M; + M is complete, hence ¢losed. Now let M,
+*5 My be a finite collection of mutuallyserthogonal closed sub-
spaces and let M, be the orthogonal complement of their (closed)
algebraic sum. Then H is the direcf 3um of the subspaces My,
N M,, the component in M; of,a'ﬁrector x 1s its orthogonal pro-
Jection «; on M;, and Pythagefean property generalizes to the
formula || #[|* = || 33, [ 3] % {2 As a corollary of

1s remark we obtain ]%ésél’s inequality: if AM,, -, M, are

orthogonal closed subs ekl and x; is the projection of x on M., then
Z’I‘llxi[|2§ 1[x||%.<\ i proy f 3

paif&ﬂige?ff‘ (M.} e o Jamily, possibly wiconntable, of
of their !e&_‘{? @t closed 5“5{3’“685 of H, and let Al be the closure
tCH X’; ;”_‘"6’”- If %y is the projection on M, of an element
is fom:}r ot =l excep;_'for @ countable set of indices ciny 2,1 ¥an
R genty and its sum is the Drojection of x on M.
Zﬁﬁf{lzft[|a1[’|2”-" % be any finite set of indices. Since
countable S?t o?' é'lt follows that x, = 0 except for an at most
fing 3, = 3 1naices a, and that 307 || x,, ||2 < ||« {|2 Set-

A 1%, we have ”_}’n — Ym “2 = n H Xy [;2 5> 0 as

M, m = m,
: L converges to an el t y € M, and,
since the pr ; element y ’
is orthogoia?:cnon of y on M, is clearly x,, it follows that x —J
0 Mo for every o and so to M, q.ed.

10G. Theorem 7 . :
. * LU0 each Hnear 5 T H* there 15 8
unigue element y ¢ g cuch thos F(i;m: Eimj) Fe

R
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Proof. If F =0, we take y = 0. Otherwise, let M be the
nullspace of F and let 2 be a non-zero element orthogonal to M.
Let the scalar ¢ be determined so that the element y = ¢z satisfies
Fly) = (v, ») (e, ¢ = F(2)/(z, 2)). Since H/M is one-dimen-
sional, every ¥ € H has a unique representation of the form
x = m -+ Ny, where m € M. Therefore, Flx) = F(m + Ay) =
RF(J/) = A, _}’) = (m + N, _Jr’) = {, -)’), q.e.d.

§11. 1nvoLuTION ox ®(H) .\:\

11A. We have already observed that the bounded lmezn' trans-
formations of a Banach space into itself form a BanAch algebra
(7C). In a Hilbert space H this normed algebral®(Z) admits
another Important operation, taking the adjoirt™see 8E). For
under the identification of A with H* (10G), the adjoint T* of a
transformation T € ®&(H) is likewise in (BQH} In terms of the
scalar product the definition of T* becomes

(1) (sz .y) - (xi ’T
forall x, v € H. We note the follomng lemma for later use.

Lemma. The nullspace of s bounded linear transformation A .
is the orthogonal camp!em&n:& of the range of its ad}omr A*  For
Ax = 01f and (Jn]y if (/??&, ) =0 forally C H, and since (A4x, ¥)
= (x, A*y), this is,cletrly equivalent to x being orthogonal to
the range of A’*'\"

11B. Theerént. The involution operation T — T* has the fol-
lowing pmp:?%es
I) & T
’(‘S+ TY* = 8% + T*
\(?\T)* = AT*
4) (ST)* = TH5*
S| =] 7]?
6} (I + T*T)™" € ®&(H), where I is the identity transformation.

~ Proof. Propert1es 1) to 4) are more or less obvious from (1).

For instance 4) follows from (x, (§T)*y) = (8§Tx, ) = (T, $* )
(x T*§* ) For 5}, we already know that || T*T'|| < || T* |-

H (using 8E), and it remains to be shown that
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| 720 < 7. Bue || T2 = b (T, T x| = lab
(%, T*Tx)/|| #||? = || T*T|| by Schwarz’s inequality.
To prove 6) we notice that

%2+ [ Tw[|* = (T + T*D)ey ) £ | (2 + T ||| % ],

so that || (7 + T*T)x || = || #||. In particular I + T*T is one-
to-one, and, since it is clearly self-adjoint, its range is df:th: in f\[
by 11A. If y, is any element H, we can therefore find aNge-
quence ¥, such that (7 + T*T)x, — y,, and since (/ + .T’i‘,,‘f\‘)_l
is norm-decreasing it follows that x, is a Cauchy sequéiice z{nd
converges to some wg € H. Thus (I + T*T)x, =, proving
that the range of (7 + T*T) is the whole of HD 'l’herefolre,
{I+ T*T)™" is a bounded linear transformativh on & with
norm at most one, q.e.d. D

11C. If 4 is any algebra over the comp, éx,\numbers, a *_opera-
tion on 4 satisfying the above proper‘tie’skl) to (4) 1s said to be
an involution. A Banach algebra with-an identity and an invo-
lution satisfying all the propertiest{l) to (7) is said to be a C*-
algebra. Gelfand and Neumarl i3] have shown that every C*-
algebra is isometric and isomdrphic to an algebra of bounded
transformations on a suitable Hilbert space. Thus a subalgebra
of ®(H) is the most gsgg;ral C*.algebra. We shall see in the fifth

10

chapter as an easy garollary of the Gelfand theory that, if a C*-

algebra is commutative, then it is isometric and 1somorphic to
the algebra of aéll

Alltontinuous complex-valued functions on a suit-
able compaet, Flausdorff space. An application of this result
yields a yery elegant preof of the spectral theorem,

1D.xThe following lemma holds for any pair of linear map-
pmgg;}f and B of a vector space into itself:

CMMA. If AB = B4 and if N and R are the nullspace and
range of A respectively, then B(N) C N and B(R) c R.

Proof. If » N, then 0 =
Hx € Rtheny = Ay for some

Bdx = A(Bx), so that Bx € N.
Jysothat By = By = ABy € R.



Chapter 111

INTEGRATION A

The theory of Haar measure on locally compact:,\g\fc:ups is con-
veniently derived from an elementary integrah{inear functional)
on the continuous functicns which Vaniah',\%ﬁtside of compact
sets (see Chapter VI). We shall accorgl,i’nkly begin this chapter
by presenting Daniell’s general extensich of an elementary inte-
gral to a Lebesgue integral [9]. The'rest of the chapter centers
around the Z? spaces and the Fabini theorem,

§12. T DANIELL INTEGRAL

12A, We suppose.gix'\en a vector space L of bounded real-
valued functions m\r}r’set S and we assume that L is alse closed
under the 1atgl¢\ia:.0berations fUg=max (f, g and f N g =
min (f, g).  Wecan take absolute values in L since | f| =/ U0
—fno. .s\fﬁnd, we suppose defined on L a non-negative linear
function.éflf which is continuous under monotone limits. These

condité@fls on I are explicitly as follows:

M If+ 9 = 1) + I
@) | Y (GO (6))

@ fzo=IHz0
@ fEeg=INzIR
@ A L= I(f) L0

Here “#, | ” means that the sequence f, is pointwise monotone
: 29
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decreasing, i.e., that f,.11(s) < fu(p) for all # and pyand“f, | /7
means that f, decreases pointwise to the limit 7
Such a functional will be called an integral, to avoid confusion
with the bounded linear functionals of normed linear space theory.
Our task is to extend 7 to a larger class of functions having all
- the properties of I, and which is in addition closed under certain
countable operations.
 As an example, I can be taken to be the class of continuGus
functions on [0, 1] and 7 to be the ordinary Riemann integral.
.. Properties (1) to (3) are well known, and (4) follows fforr the
“fact that on a compact space pointwise monotone convergence
- implies uniform convergence (see 16A), The extehsion of I, is
* then the class of Lebesgue summable functions, afhd the extended
-1 is the ordinary Lebesgue integral. \4
12B. Every increasing sequence of real-valuéd functions is con-
vergent if 4w is allowed as a possible valué’of the limit function.
~Let U be the class of limits of monotmie:increasing sequences of
_ func{:ions of L. U includes 7, since\the sequence f£,, = fis trivi-
) all_y. Increasing to £ as a limit, 1635 clear that U is closed under
- a_dchtion, rfmltiplication by ngrﬂriegative constants, and the lat-
tice operations, e
. We Now want to extend\¥ to U, and we make the obvious defi
nition: I(f) = lim I3 where £, 1 f and S € L, and where
.-i»oo is ?Ilowed 2s acpossible value of 7. 1t wil] be shown in 12C
“pendent of the particular sequence | f,}

tion agree, With the old in case /' € L (for then we can set fu = f)
and that;t extended J satisfies (1) and (2) with ¢ = 0, It will
also lechw from 12C that J satisfies (37).

22¢. Lemma. Jf { £} and {gm]

- Le / are increasing sequences of
Junctions in L and lim En £ lim "

Sns then lim I(g,) < lim I(fa).

Proof. We first notice that, if 4 i
i 5 € L and limf, = £, then
A ZCR) 2T, for fu 2o & and So VR R so that
ML 2 B 17 00 = T, by 3 g
alng =gmand . t o , -
that lin 75 passing to the limit as m — o, it follows

= lim I{gn), proving 12C. If liﬁif,v,' = lim g,,, we
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also have the reverse inequality, proving that 7 is uniquely de-
fined on U,

12D. Lemma. If f, C U and f, 1 f, then £ € U and I(f,)
TI().

Proof. Choose g,” € L so that g, /s, and set 4, = g,*
Ue-r U g Then £, € L and {4.} is an increasing sequence.
Also gi" £ ha £ f,if i £ n. If we pass to the limit first with(re-
spect to 7 and then with respect to 7, we see that f < lim &, < /.
Thus %, 1 f and f € U. Doing the same with the mequahty
I(g") = I(ha) £ I(fa), we get lmI(f) < f(f) é“hmf(fn),'
proving that I(£.) 1 I(f), q.e.d. .

12E. Let — U be the class of negatives ofm‘ﬁlnct1ons in U
~U=|{fi —f € U}. If f&€ —U, we makésthe obvious defi-
nition J(f) = —I(—F). If fis also in U this definition agrees
with the old, for f -+ (—f) = 0 and & is additive on U. The
class — U obviously has properties exactly analogous to those of
U. Thus, — U is closed under menotone decreasing limits, the
lattice operations, addition and mtﬂtiphcatzon by non-nhegative
constants, and J has on — & the properties (1), (2) and (3).
It is important to remarkhat, if g € ~U, 2 € U, and g S 4,
then % — ¢ € U and JED™ I(g) = I(h — g) = 0.

A function £ is deﬁn& to be summable (better, I-summable) if
and only if for everyné > 0 there exist g € —U and & € U such
that g < f < I(‘g) and [{4) are finite, and (%) — 71(g) < e
Varying g and %) it follows that glb I(8) = lub I(g), and I(f) is
defined to bE\thls common value. The class of summable func-
tions is des,lgnated L' (or L'(7)); it is the desired extension of L.

We, fite immediately that, if f € U and I{f) < =, then
/ €L} and the new definition of I{f) agrees with the old For
then there exist f, € L such that f, 1 f, and we can take % = Vi
and g = = fa for suitably large .

12F. Theorem. L' and I have all the properties of L and I.

Proof. Given f; and f, € L! and given ¢ > 0, we choose g; and
&2 & —~U, and %), 4, € U, such that g; £ f; £ %; and I(k) —
A(g) < e/2,i = 1, 2, Letting o be any of the operations +, N,
U, we have g ogaSfiofaShiokyand ok —giofp <
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51 — &1) + (5 — g), and therefore I(4, o h) — f(gl' o0g) < e
Etlfollfw)s at Emce that/y + fo, /1 U fa and fy N f; are in L, and,
since I is additive on U and —U, that | I(/, +_}jg) — I{f) »
I(fs) | < 2. Since ¢ is arbitrary, (1) follows. That ¢f € L
and I(¢f) = cI(f) if f € LY is clear; we remark only _that the
roles of the approximating functions are interchanged if ¢ < 0.
If /20, then % 20 and I{f) =glbI(h) = 0, proving (3).\(4)
follows from the more general theorem below.

12G. Theorem, Jf f, < It (n=0,1, -2}, fu 1 Loand lim
I(f) < oo, then f € I and 1(f,) 1 I(f). S

Proof. We may suppose, by subtracting off Jo it necessary,
that /= 0, We choose b CU (=1, . -+ 1s0'that (fu = fu=1)
= ;’rn and I(}Zﬂ) < I(fn _"fn—l) + E/Qﬂ‘ r-[:hen fn = z}f /7!-1‘ and
28T (h) <I(f:) + 6. Setting h = 3 A we havs € U and
I(B) = 37 Ithy) by 12D. Moreover, S % and J(4) < lim I fa)
+ e Thus if m is taken large enodgh; we can find g€ —Uso
that g< /. <7< and I(A).&\(g) < 2e. It follows that
J L' and that I(f) = lim ICE.

12H. A family of re
if it is closed under t

h& operations of taking monotone in-
creasing and monotong decreasing limits. The smallest mono.

tone family including™z, wil] be designated ® ang 1ts members
will be called. Bairé functions.

If2 <&, thed‘dny monotone fa

mily 9 which contains (g U i)
N % for SVeRE € L also containg (fUR NEfor every f € ®,

for the Fug’c‘tionsf such that (£ U AN kS form a monotone

family}jv\hlch includes 7, and therefore includes ®. In particular
the gmallest monotone family including 7+ is g+ (where, for
anyclass of functions C, C* is the class of non-negative functions
me). |

Proof. (From Halrnoa': [231) For any function f '@ let
ctions ¢ € ® gach that £ - &/ Ugand

o monotone family, and, if f ¢ L,
then 9( f) includes Z angd ¢hy

) - erefore is the whole of ® * But
& & mf) if and only if f ¢ M(g); therefore, M(g) includes
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for any g € ®. Therefore, 9M(g) = & for any ¢ € ®. That is,
iffand g €&, then f+ g, fUgand f Nz € .

Similarly, if 9% is the class of functions f € & such that d C®
for every real ¢, then 9% is monotone and includes I so that
m = ®@.

12L. A function f will be said to be L-bounded if there exists
g€ LY such that | /| = g. A family & of functions will be saigh
to be L-monotone, if whenever £, is a sequence of L-bounded

functions of § and f, 1 forf, | /, thenf € 5. )

N

Lemma. [f f € ®, then there exists g € U such that £ g

Proof. The family of functions / € ® for whicH(this is true
1s monotone (by 12D) and includes Z, and is theréfore equal to ®.

Theorem. The smallest L-monotone familyincluding LT is &,

Proof. Let 5 be this smallest family., .F‘b’r\any fixed g € LT the
functions £ € ®* such that f N g € ¢ form a monotone family
including Z* and therefore equal to &% Thusiff € @Tandf = g,
then / = f N g € 5; that is, § ¢oftains every I-bounded func-
tion of ®*, Now let £ be any fitnction of ®™ and choose g € U
(by the lemma) such that f&%. There exist g, € L* such that
& 7 & ThenfNg, C\é:f{)eing L-bounded) and f N g, T/, so
that / € F by the defihition of an Z-monotong family. We have
proved that &+ @ Since & is itself an L-bounded family in-
cluding L* and seé 5 is the smallest such it follows that &+ = g,
q.e.d. \:\

12]. Weniow replace L! by L' N ®. That 1s, from now oh a
function (S ‘not considered to be summable unless it satisfies the
carlief “definition (12E) and also is a Baire function. This re-
strictidh to Baire functions is entirely a matter of convenience.
It avoids the necessity of certain “measure zero” arguments in
proofs such as those of 16C, 31A and 33A, and is helpful in situa-
tions involving more than one integral.

Theotem. [ order that f € LY, it is necessary and sufficient
that f © ® and that there exist g € L' such that | f | £ g.

Proof. The necessity is trivial. In proving the sufficiency we
. may suppose that f = 0. Then the family of functions 2 € &+
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such that 2 N g € L' is monotone (by 12G) and includes L,
and is therefore equal to &%, Thus f=f Ng e LY, q.e.d.
12K. We now extend [ to any function in &* by putting 7(f)
=  if f is not summable. A function f € ® will be said to be
integradle if either its positive part /& = f U 0 or its negative
part /7 = —(f N 0) is summable. Then I(f) = Ity — I
18 unambiguously defined, although it may have either 4o or
—o as its value, and f is summable if and only if it is integtable
and | /()| < w. Theorems 12F and 12G have the following

theorem as an immediate corollary, \

Theorem. 7 f and g are integrable, then S+ g ifintegrable and
If+ g = I(f) + I(g), provided that I(f) and d(g) are not appo-
sitely infinite. If fo is integrable, {(f1) > = and f, 1 F, then
£ is integrable and I(f,) T I(f). Y,

$

3

§13. EQUIVALENCE aNnp' MEASURABILITY

13A. Tf 4 8, then “g,” cgnééhtionally designates the char-
acteristic function of 4 ea(BP= 1 if P2 € 4 and 4(p) = 0 if
pEd. Wfes €@, we shall'éay that the set £ is integrable and
define its measure wlA) as I (e4). 1t follows from 12F that, if 4
and B are integrab e_.;\it.ﬁen soare A UB, 4 N B, and 4 — B;
and from 12G thas, if {4,) is a disjoint sequence of integrable
set.s,_then U?ng'n. 1s integrable and p(Ur A4 = e, If
Ais integrablé and u(4) < oo, then 4 will be said to be summable.
The integrald will be said to be bounded if § is summable: it is

clear th I is then a bounded Jinear functional with respect to
the uniférm norm.

~I3B. We shall now further restrict

L by adding a hypothesis
“uged by Stone [47], namely, that d 8 &

F€L s fn1cL

Then also 7 U (-1) L, and these properties are preserved

_through the extension, so that f € @ = S N1 € ®. This axiom
1s added to enable us to prove the following theorem.

Theorem, Iffe€®and 4 >0, then A4 :
3 1 = : S
wntegrable set. If f € L, then 4 ;s summable. (p:/@) > a} is o
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Proof. The function f,, = [#(f — f N )] N 1 belongs to & and
it is easy to see that f, T ¢4, so that s € ® and A is integrable.
The second statement follows from the inequality 0 < ¢4 < F*/a.

13C. It is extremely important that the converse of this theo-
rem is true.

Theorem. I/ /20 and A = {p:f(p) > a} is integrable for
cvery positive a, then f € G.

N\
Proof. Givens > 1,let 4,7 = {p: 8" < f(p) < a7T1}, —oo™&

m < 00. Let o,° be the characterlstlc function of 4,5, zmd\let
fi = 2% 8n’. Then o,¢ € ®* by hypothesis, and, fherefore
et Ifs |1 through a suitable sequence of &alues (say
8, = 2%7), then £ 1 £ and it follows that f € ®, q\e d.

Corollary 1. Iff € &% and a > 0, t}zenf“ & &+,

Proof. /* > 4if and only if f > 44/, an\ \he corollary follows
from the theorem and 13B.

Corollary 2. [ffand g € &7, mmfg caet
Proof. fz=I[(f+g?®— (/& g) 1/4.
Corollary 3. If f ¢ (B \{izen I(f) ffdu, where the integral

is taken in the .cmz‘omary\)seme

Proof. The functlon #3 in the proof of the theorem was defined
with this corolla\}( in mind. We have ; £/ = 8(/3) and I(/3)

ﬁmf(go,h\) = > 8mu( A0 Hffa du. Since I(f3) = I(f) =
5I(fa an ffa du <ff = affg du, we see that, if either of the
num}ers I{f) and ffa'u is finite, then they both are, and that

110 -*ffd,u] < (36— DIA) = (68— 1I(f). Since § is any

number greater than one, the corollary follows.

13D. A function f is said to be a nul/ function if f € ® and
I( f ) = 0. A setisa null set if its characteristic function is a
null function, that is, if it is integrable and its measure is zero,
Any integrable subset of a null set is null, and a countable union
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of null sets is a null set. Any function of ® dominated by a null
function is a null function, and a countable sum of null functions
+s null. Two functions f and g are sald to be equivalent if (f — 2
is a null function.

Theorem. A function f € & is null if and only if {p:f(p) # 0}

is a null s

Proof. Let 4 = {p: f(p) # 0}. If 415 a null set, then npfis
2 null function and mes T ®eas, so that the function cgmal'to
Lo on A4 and zero elsewhere (wgs) is 2 null functieh, “But
0= | f| < ®pa so that # is null. Conversely, if £ is dull, then
so is (| f) N1, and, since (] P N1 T o, it follows that
¢a is a null function and 4 is a null set. \*
‘ We are now in a position to remark on an amiBiguity remaining
in 12F, namely, that, since the values :l:oga.‘a}é allowed for a sum-
mable function, the sum f; + /2 of two 'summable functions s
not defined on the set where fy = +&and f; = Foo. However,
it is easy to see that, if 7 is sundmable, then the set 4 where
| A1 = = is null, and we can therefore eliminate == as possible
values if the convergence thebrems are restricted to almost every-
where convergence (pointwise convergence except on a null set).
The other method o handling this ambiguity is to lump together
as a single elemenp functions equivalent to a given function
and L:hen deﬁqe\"addition for two such equivalence classes by
choosing repéséntatives that do not assume the values Z=o.
fagtaﬁhi%% :}f;e;} -,:i‘:e s]}ace N is-not it‘self. an integrable set, 2
aspegtg ¥ o theoo maIny difficulties in the more technical
in e case of the Hans r;j;s rt may ilappen, however, and does
“8.4s the wnion of 2 {perha anconnt ocally.c::n-npact T has
imtograble sets with 1o 1;3 uncountable) disjoint family {é}}'Of
cluded in an at most coEn{zfl:fty ﬂ?at every integrable set is 10-
2bove.mentioned diﬁculties > e unon of the sets J,. .Now the
to be measurable if the inte et PR A set A"IS defined
and a function is m reerhons A'-ﬂ-S"c are al-l 1f1tegrable,
¢ easurable if its restriction to S, is integrable
or every a. It follows that the intersection of ble set
with any integrable set is integrabl e e o o
a measarable fanction 1o an grable, and tha.t t_he restriction of
¥ integrable set is integrable. The
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notion of a null function can be extended to cover functions whose
restrictions to the sets 8, are all null, and the same for null sets.
Two functions are eguivalent if their difference is null in the above
sense. The families of measurable functions and of measurable
sets have much the same elementary combinatorial properties as
the corresponding integrable families and there seems little need
for further discussion on this point. The important property of
a measurable space of the above kind is the possibility of build.
ing up a measurable function by deﬁnmg it on each of the sets
Sz In a general measure space § there is no way of deﬁmrbg a
measurable function by a set of such local definitions. )

Since every integrable set is a countable union of Suimmable
sets, the sets §, may be assumed to be summable g;éo desired.

§ 14, THE REAL Li"_smcr-{s

14A, 1If Pzl the set of functionsf 6\_(?) such that | f|? is
summable is designated I?. The nektfew paragraphs will be
devoted to showing that L7 is essentially a Banach space under
the norm || £ |, = [I(] £ [?))/7.c8ince || £ 1|, = 0 if £ is null, it
is, strictly speaking, the quohent space L7/9 (9 = the sub-
space of null functions) thatis a Banach space. However, this
logical distinction is g rq%rally slurred over, and Z” is spoken of
as a Banach space ofs fgﬁctlons

U fe e LY it ig COnvement to use the scalar product notation
(g =1( fg) The Hélder inequality, proved below, shows that
L% i3 a real Hﬂbert space, and it follows similarly that the com-
plex 1.2 spa&dlscussed later is a (complex) Hilbert space. These
Spaces are among the most important realizations of Hilbert
space«

. (Holder's inequality.) If f € L?, g € L2 and (1/p) +
(1/?) = 1, then fg € L' and

(Ao = £ 1Ll glle

Proof., From the ordinary mean value theorem of the calculus
it follows that, if x 2 1 and p 2 1, then #*? £ w/p + 1/g. If

¥ = a/b, this becomes a!/?41/¢ < f -+ é If f e LP, g & L7 and
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“ o #0 = Hg”m then we can take 2 = | f |;;/” Sl &=
l 17/l gl in this inequality. It follows from 13C and 12
that the left member is summable, and integrating we get 7 fp |/
A F e llell) =1 Holder's inequality now follows from

NIy =R If |/l =00r || gll, =0, then Ju is null
and the inequality is trivial.

COI'OHHIY. Iff, g (B+, then (.fs g) = “ f “P” & “rr ~N
14C. (Minkowski’s inequality.) [7 and g C LP (p 2 1), then
StgE€LPand .\'\"'\
I/ +elle sl A+ 1 gl
Proof. The case p = 1 follows directly f'rc»ml’ft f+e

| =

+lele I p>1 and 4 g € L7 the ineduality | f 4 g[?

{Tthax (WANFI) P 7P +g® s\hows that f ++ g € L*.
K7,

cn

@
W/l <10 £+ g 1 DRI S+l gl
SUS el b+ 117 + g

where t]}e second inequali,tjf:follows from the Hélder inequal-
1ty Minkowski’s inegmality is obtained upon dividing by
| fHgll 1 ||f}g||p = 0, the inequality is trivial.

&£
Corollary. 1/ £ &, thon || £+ gll, = 1 /1 + || ¢ 1
14D. Since ,th'e“homoge

: N . _neity property || Ml = ESE ISt
thous f{'(?fgl"the definition of || / |lp» Minkowski’s inequality
shows %{1} i» {actually L2/nul] functions) is a normed linear

Space M remains to be shown that L7 is complete.

. ;’ZE‘*iiEoreln. L7 i complete if p = 1.

ROl Welet remark tha, i, € 75,5 3 0 ang Al

E:;}’.Z};ezj-_—gf’anLp and || £, = 221 follye For ga =
equaiity andanin e ”Tpf Zf’f | fills by the Minkowski in-
: ) Since En 1t ()HOWS that < ir and il _|. =

Now let { £ ' b L
= BY any Cauch m -
pose for the Mmoment, E Sue.Y sequence in 72, We ay sup
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bo = fu + 2w | fixr — fi, it follows from our first remark that
¢, and £, € L7 and that || 2, — ga |[z < 2712 Moreover, the
sequences g, and A, are increasing and decreasing respectively,
and if we take f as, say, lim g, then f € L? and || f ~ /|l =
| o — gullp < 27"*% Our original sequence is thus a Cauchy
sequence of which a subsequence converges to f, and which there-
fore converges to f itself, g.e.d.

14E. We say that a measurable function f is essentially bounded
adove if it is equivalent to a function which is bounded abowe,
and its essential least upper bound is the smallest numbex which
is an upper bound for some equivalent function. The {edsential
least upper bound of | f | is denoted || / ||»; this is thesgme sym-
bol used elsewhere for the uniform norm, and || f{f'is evidently
the smallest number which is the uniform nofwi of a function
equivalent to /. If L” is the set of essent.iaily bounded measur-
able functions, equivalent functions being“dentified, it is clear
that Z* is a Banach space (in fact, a\Banach algebra) with re-
spect to the norm || f |l,. The follgwing theorem can be taken
as motivation for the use of th(::s;ﬁbscript “@” in || f |lor

14F. Theorem. If f € L2.for some p > 0, then limg L, [| /[[4
exists and equals || f ||ay ihere o is allowed as a possible value of
the limit, \\{

Proof. If || [ 0, then || f|j, =0 for every ¢ > 0 and
the theorem is thytal. Otherwise, let # be any positive number
less than | flfm\and let 4, = {x:| fw) | > a}. Then [ fll. =
@{P(Aa)]l”qaxl\"foreover, 0 < u(Ad.) < =, the first inequality hold-
ing becasist @ < || f ||, and the second because f € L*. There-
fore»li@& " o|l Fll; = @ Since ais any number less than {| £ [
vty | 7 2 11/ o

The dual inequality lim, .|| /]l = | fil» is obvious if
| £l = e, Supposing, then, that || / |l < 0, we have | £
=i/ 2(l #|l)e® and therefore

£ 1l = () £ lyr/ed] f [y 1%
giving the desired inequality m, owll /il S A=
14G. Theorem. L is a dense subset of [F, 1 £ p < .
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Proof. We first observe that I is dense in L! by the very defi.
nition of L' (via U). Now let / be any non-ncgative function in
I?, Let 4= {x:1/n <flx) < n} and let & = fer.  Then
S—g 1 0asn — o and we choose # so that /=gl < e/
Since 0 £ g < npy, it follows from 12 that ¢ € L'. If we choose
BEC LT sothat||h — gl, < (¢/2n)7 and 4 < » (see 13B), then
A=l b - g0 < /2. Thus

"N\
W=t f =gl +lle -4l <e .
q.e.d. ' ,\”.\
' §15. THE coNjUGATE spacE oF 77 O

_ 15A. The variations of a bounded function 1> We now con-
sider the space L of 12A as a real normed linéar space under the
uniform norm || 7|, (see 13A). \

>
Theorem. Fvery bounded linear Suwretional on L is expressible

as the difference of two bounded integhgls (non-negative linear func-
tionals), R

Proof. Let F be the givep:'fa'ounded functional, and, if /= 0,
let FH7) = tub {F(g): 0 S¢S fl. Then FHf) 20 and
| FH() | =7 SN It s also obvious that Fif) =
PR 1f.c > 0. Censider now 4 pair of non-negative functions
frandfiinl. 0S5/ and 05 g, 2 i then 0 % g 4
$2 S/ b f mDFHA 4 £) 2 lub Fle, + g0 = Tub Flgo +
lub F(g,) =B¥f) + FH(py). Conversely, if 0 < ¢ < £, + for
then 0 Qél\ﬂ g=hand0= g4 n £ = fa, 50 that FH(f, + fa)
=+1ub.§‘eg) < lub F(f N g) + Tub Flg—fiNg < FHA) +
F':({‘g)—:- Thus F* is additive On non-negative functions. But
MOWA+ can be extended to a linear functional on I, by the usual

}Eﬁni.tion: F(fy “fz)_= Ff) — F(fy), where £, and f, are non-
F|Lf o 7 s bounded since’ | FHj) | 5 ] £]) &

) E%w let F—(f) = 7S ~ Fif). Since F(f) = F(f) if
fun:cti; ‘;rle see that F+ 1s also a bounded non-negative linear
o nal, and F = F s proving the theorem.
« At integral [ is said to be absolutely continuous with re-
Spect to an integral 7 if every Lnull set is Jonyll,
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The Radon-Nikodym Theorem. If the bounded integral | is
absolutely continuous with respect to the bounded integral I, then
there exists @ unigue I-summable function fo such that ffy is Isum-

mable and J(f) = I(ffo) for every f < L}]).

Proof. (From [23].) We consider the bounded integral K =
I + J and the real Hilbert space LX(X). If f & LK), then
S=r1¢& LYK) and ~

IO =JA /D2 KADsHA Il O,

NS “
by the Schwarz (or Holder) inequality. Thus [ is a \botnded
linear functional over L2(K), and there exists by 190G @ unique
g < L*K) such that AN

J = (69 = KUD-

Evidently g is non-negative (except on gp\K—hull set). The ex-
pansion

T = K(f) = 1) + JURS 10D + 1) + T
= = I Xt R T |

shows first that the set \Kli;:?e g = 1is I-null (by taking f as its
characteristic function)\and so J-null. Thus /" | O almost
everywhere if £ 2 Qpand since f € LY(J), then J(f¢) | 0 by
12G.  Second, I;Qe:%ame expansion shows that, if fo = 2.7 ¢,
then f, < Ligfand J(f) = I{ffo), again by 12G. Taking
f=1,it fqlms in particular that fo € L'(J). The Z-unique-
ness of fosfollows from the XK-uniqueness of g and the relation
8 = fo/fD+ fo). Since the integrals J(f) and I(ffs) are identical
on LK) and, in particular, on L, they are identical on L!(]).

This proof is also valid for the more general situation in which
J is not necessarily absolutely continuous with respect to 1.
We simply separate off the set N where g = 1, which is Z-null as
above but not now necessarily J-null, and restrict / to the com-
Plementary set & — NV,

15C. Theorem. If I is a bounded integral and F is a bounded
!z'nearfmzm'anal on IP(I), 1 £ p < w, then there exists a unigue
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Function fo C LY (where ¢ =p/(p— 1) if p> 1 and ¢ == if
p =1y such that || follg = || F|| and

F(gy = (g,/o) = I{gfo)
Sfor every g € IP. That is, (L7)* = L.

Proof. The variations of F are integrals on [ since f, | O
implies || fa|lp | 0 and since F* and F~ are bounded by {| £|.
Since || £, = 0, and therefore F+(f) = F~(f) = 0, when¥is
I-null, the variations of F are absolutely continuous with¢respect

to I. Hence there exists by the Radon-Nikodym tht:ogcliﬁ a sum-
mable function /4 such that . N

F(g) = I(gfo) ¢

for every function g which is summable with‘espect to both F*
and 7, and in particular for every g@b’ If g is bounded,
02g=|fo] and p > 1, then

e = g™ senforfo) < || FH.":H‘éq.‘l o = 1l £l {2

so that || g{l, £ | 7]l Singeﬁ~}}vé can choose such functions g»
sz ﬁh;‘t[[gn T foly it foilq\ys from 12G that f, & L7 and i fo IE
< . &

The case p = 1 1s éétttreated directly. Suppose that || fo |k
Z|Fil+ee > .B).q{al‘ld let g be the Charactgfistic func|tion of
4 = {p:| Sl oM &| FIl + ¢/2}. Then (| F|| + /() £
H gfo) = Bgsgnfo) < || Fi|-[| gl = | F ||ulA), a contradic-
ton. Thetdlore || fu . < || 7|1

Confe?sel}_', we }.1ave [F(g)l = I g S |l gl fo ls (by
the I;Ioht'ler inequality if p > 1), so that || Fl] = || folle To-

her with the above two paragraphs this establishes the equality
S RFAN |

The uniqueness of Jo can be made to follow from 15B. Itcan
b{a as easily checked directly, by observing that, if 7, is not (equiv-
alent to) zero, t}len F 15 not the zero functional, so that non-
equlsvalent functhns Jo define distinct functionals 7.
15D, The requirement that I be bounded can be dropped

from the preceding theorem if p > 1, but if p = 1 it must be

3 b .
;zﬁoawc:.d by some condition such as that of 13E. 'The discussm.n
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If the domain of F 1s restricted to the subspace of I? consisting
of the functions which vanish off a given summable set §,, then
the norm of F is decreased if anything. The preceding thecrem
furnishes a function f; defined on §,. If S and /» are a second
such pair, then the uniqueness part of 15C shows that f; and /,
are equivalent on §; N 8. Suppose now that p > 1. Let 4 =
tub {|| 7 |ls: all such f} and let $, be a nested increasing sequence
sach that || f.|[s T & Then {f.} is a Cauchy sequence in E%

“and its limit £, 1s confined to Sy = [J5 Sn, with [} folle = b Be-
cause of this maximal property of f,, there can be no nbn= “ull
f' whose domain §’ is dlSjOlnt from §;. Now if g €\ J®and if
the set on which g > 0 is broken up into a countable hunion of
disjoint summable sets 4,,, then the restriction fm\dffo to A, 18
the function associated by 15C with A, andNKe) = .7 Flew)
= 20 Lgmfm) = I{gfo). As before, || FH 2= fo llos and since
| folly =< || F|| the equahty follows.\

Now if = 1 this maximizing proceSs cannot be used to fur-
nish a single function fy € L* and there is in general #o way of
plecing together the functions f, asagc:lated by 15C with summable
sets 5. to form a function f, defined on the whole of §. How-
ever, if there is a basic disgpint family {S,} with the property
discussed in 13E, then ti{®) function Jo defined to be equal to /;
on S, is mea‘;urable an\k\is easily seen (as in the case p > 1 con-
sidered above) to satlsfy F(g) = I(gfy) for all g € L.

.\.,

§ 16. 1.-\:TJ;<3"§¢AT10N ON LOCALLY COMPACT HAUSDORFF SPACES

16A. W é}pec‘lallze the considerations of § 12 now to the case
where 845 a locally compact Hausdorff space and L is the algebra
of E&L peal-valued continuous functions which vanish off compact
sets. We write L% for the set of non-negative functions in Z,
and L, and L,V for the sets of functions in L and L™ respec-
tively which vanish outside of 4.

Lemma 1. [ff, € L and f. | O, then fo | O uniformly.

‘Proof. Given ¢ let C, = {p:/.(p) & ¢}. Then C, is compact
and . C, = &, so that C, = & forsomen. Thatis,]| fulle =
€ for some, and so for all later, 7, q.e.d.
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Lemma 2. A non-negative linear functional is boynded on Lg
whenever C is compact.

Proof. We can choose g € L* such that g 2 1 on €. Then

fE€ Lo implies | £ S| fllag and [ 1) [ £ 1@ fllow s0
that || I{] £ I(g) on Le.

Theorem. Every non-negaive linear functional on L is an in-
tegral. Q)

Proof. 1ff, | 0, then || fulls | O by Lemma 1. ¥ A Lo,
then f,, € L¢ for all #, and, if B is a bound for / on € (I'gmiha 2),

then |I(f)| S B|| fallo and I(f,) | 0. Thergfiye, / is an

integral.

16B. Let 8y and 8y e locally compact Hmuh’r;sf spaces and let
I and | be non-negative linear Sunctionals @ L(S1) and L(82) re-
specively. Then L(J,f(s, ) = J, U4, 3)) for ecery J i
L(8y X 8y), and this common value is'npy integral on L(S1 X Sa)-

Proof. Given f(x, y) € L(S, X083), let C; and C; be compact
sets 1§ and S, respectively‘%ﬁch that / vanishes off {5 X Ca,
and let B, and B, be boupdsfor the integrals 7 and J on € and
Cy respectively,  Givendey we can find a function of the special
form k(x, ) = E?\\?i(@ﬁi@); g € Loy, hi € Lo, such that
” fS=klle <e fOlf v the Stone-Weierstrass theorem the al-
gebra of such fitctions & is dense in Le,yq. 1t follows, first,
that.lhf(f;,(y) ~ X Jhgx) | = | J,(f = &) | < €Bs, so that
Juf is a pafform limit of continuous functions of x and is itself
theref\ Continuous, and, second, that | I,J,f — 3o (g J () |
< eB3B;. Together with the same inequality for J, ./ this

\3}3;;?; l {:fyf — Julof | < 2eB,B, for every ¢, so that I,J,/ =

s clear that this functional is linear and non-negative,
and therefore an. integral.

16C. (Fubini Theore
defined above and

as a function of

t ) If K is the functional on L(Sy X S2)
Y, 3y € &4y X 89, then f(x, y) € 8T (S1)
-?C‘fOf‘ every v, Ixf(x).y) e CB+(S2) Gﬁd
. Kf = T fx, 3)).

Proof,

- BT, X SWE have- seen in 16B that the set ¥ of functions of
1 2) for which the theorem ig true includes Z¥(8y X S2)-
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It is also L-monotone. For suppose that { £.} is a sequence of
L-bounded functions of § and that f, 1 forf, | f. Then K(/)
= lim K(/2) = lim Jy(Iofw) = J,(im I.1) = [, (I lim f,) =
JuIzf, by repeated application of 12G or 12K (or their nega-
tives). Thus & is L-monotone and includes L¥, and is therefore
equal to &+ by 12L.

The Fubini theorem is, of course, valid in the absence of to-
pology, but the proof is more technical, and the above case is-all\
that is needed in this book. : A

16D. The more usual approach to measure and integrafion‘in
Cartesian product spaces starts off with an elementary feasure
wlA X By = p1{A)us(B) on“rectangles” 4 X B (A CYSI,"B c §,).
This is cquivalent to starting with an elementar)r.irgtégral

[T et vaxn = T eemlAdpB)

over linear combinations of characteristi’c'fﬁnctions of rectangles.
The axioms of 12A for an elementary integral are readily verified.
We first remark that for a functionyflx, y) of the above sort the

definition of ff 1s actually in;?térms of the iterated integral:

[r=f ( f fa’x) dy = %ﬁ}f@) de. If now falx, ) is a se-

gquence of e]ementar:v" nctions and f, | 0, then £, | 0 as a
function of x for:e\’fér} y and therefore f Sudx | O for every ¥
by the properp}izl\Z“G of the integral in the first measure space §,.
But then’f ff" a’x) dy | 0 by the same property of the inte-

gral{ﬂ; t\he second space. Hence ffﬂ du | 0, proving (4) of

12A. The other axioms are more easily checked and we can
therefore assume the whole theory of measure and integration as
developed in this chapter.

In cdse §; and §; are locally compact spaces and u; and us
arise from elementary integrals on continuous functions, we now
have two methods for introducing integration in §; X Sz and it
must be shown that they give the same result. If ® and & are
the two families of Baire functions thereby generated (® by con-
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tinuous elementary functions and &' by the above step functions),
it must be shown that ® = ® and that the two integrals agree
on any generating set for this family. Now it is casy to see that
paxs € ®if 4 and B are integrable sets in § and §y, for pays =
wa(®)er(y) lies in the monotone family generated by functions
f(x)g(y), where f and g are elementary continuous functions on
§; and 8. Thus ® < ® Conversely, if f € L{5) and g€
L(§5), then f(x)g(y) can be uniformly approximated by astep
function of the form (3 04, (%) (X ¢5,(y)), and, thercfore, By the
Stone-Weierstrass theorem any continuous function /{x{%) which
vanishes off a compact set can be similarly approximated. Thus
® < ®', proving that & = ®'. By the same ar;ifment the two

integrals agree for functions f(x, y) of the form J(% g[)) and there-
fore on the whole of ® = ®’. \
N

R
§17. THE coMPLEX{LP/SPACES

17A. We make the obvious deﬁ’ﬁition that a complex-valued
function f = # + v is measug@ble or summable if and only if
its _real and imaginary parts.22and v are measurable or summable.
Evidently a measurable function / is summable if and only if
lfl = (& 4 o7)% iS\s'(ilﬁmable, and we can prove the critical
Inequality: N
N7 s fD.

Proof. ;l@%“observe that %= 2%/(u® + )% € L'. The
S;hwzaxtz\%nqua.lity can therefore be applied to |u| =
A2 )”g.xvm.g | I} |2 = IR ((u® + v%)%). Writing down
gg\ig‘orrespondmg wequality for v and adding, we obtain

@ P 1I6) 2 5 16 + o9,

as was desired,

a;'?B. The definition of 72 is extended to include all complex-
valued measerable functions f such that | £1? is summable with
llff ”j’ =1U-(l FIEN2 ag before, and we see at once that f &€ L7
re;nainois ;If 0 € I*. The Halder and Minkowski inequalities

ded ptf anged by virtue of the inequality in 17A. The ex-
tended 27 3s complete, for a sequence f, = u, + v, is Cauchy 1f
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and only if its real and imaginary parts «, and v, are real Cauchy
sequences.

17C. A bounded linear functional F on I?, considered on the
subset of real-valued functions, has real and imaginary parts
each of which is a real-valued bounded linear functional. Taken
together these determine by 15C a complex-valued measurable
function fo € L2 such that F(g) = I(gfo) for every real function
g € L?, and hence, because Fis complex-homogeneous, for evefgr\
§ & L7 The proof that || F|| = || f,ll, holds as well i the
complex case as in the real case if we replace /5 by f thrzg’téghbut
15C and remember that sgn fy = ef¥eh, N\ )

Since this time we already know that 7y € L? a shight simplifi-
cation can be made, as follows. That || 7] §H~\fg le follows,
as before, from the Holder inequality. If p >N, we can take
g = fo|"71eh and get F(g) = I{| o [0 Aol el =
Gl foll*m and | Fg) /)| gllo = |} Jo llpcSFhus [| 71| 2 1] fo Il
and so [| F[| = [ fo . O |

R\
g {‘.}
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N
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BANACH ALGEBRAS \

AW,
o\
1L N

This chapter is devoted to an exposition of Q;Krt"of the theory
of Banach algebras, with emphasis on the ¢ofamutative theory
stemming from the original work of Gelfand{12]. This theory,
together with its offshoots, is having a m’é&ed unifying influence
on large sections of mathematics, andw’ particular we shall find
that it provides a basis for much of thé“general theory of harmonic
analysis. We begin, in section J9; with a motivating discussion
- of the special Banach algebra, €(S) of all continuous complex-

" valued functions on a compé.i:t Hausdorff space, and then take
- up the notions of maximgl ideal, spectrum and adverse (or quasi-
inverse) thus introdfifed. The principal elementary theorems of

the general theory are gathered together in § 24.
\<&

O 1
" §18. DEFINITION AND EXAMPLES

Deﬁg‘m n. 4 Banach algebra is an algebra over the complex
numbers, together with a norm under which it is a Banach space and

\w}.;;s'c is velated to multiplication by the inequality:

[yl = L]l 1 1.

| If a Banach algebra 4 has an identity e, then || e || = [{ e¢ | =
lell? so that {| ¢|| = 1. Moreover, it is always possible to re-
- norm 4 with an equivalent smaller norm |l 2 ||| so that ||| I
= 1; we me?ely give an element y the norm of the bounded linear
transformation which lefe-multiplication by y defines on A

o (Hlylll = lub [} yx /N & ) and observe that then 1B /1) ¢ I} =
) 43
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Mxlll = [| %1, We shall always suppose, therefore, that el
=1

If 4 does not have an identity, it will be shown in 20C that the
set of ordered pairs {{x, \): X is a complex number and x € 4} is
an extension of / to an algebra with an identity, and a routine
calculation will show the reader that the norm || (v, M) || = || # ||
+ | A | makes the extended algebra into a Banach algebra.

We have already pointed out several Banach algebras in ouf™

preliminary chapters. These were: S
L\

la. The bounded continuous complex-valued functions Gh'a to-
pological space §, with the uniform norm || £ ||, = lubsas | f(v) [
(see 4B). _ D

1b. The essentially-bounded measurable complé’:ﬁvalued func-
tions on a measure space 5, with the essentiaklmiform norm (see
14E). D a

2a. The bounded linear transformatig)}s (operators) on a
Banach space (see 7C). Y :

2b. The bounded operators on QHi}bert space (§ 11).

Of these algebras, 1a and 2b wijli?ﬁe of continued interest to us.
Still more important will berthe group algebras of locally com-
pact groups, of which thqifdﬂowing are examples:

\ .
3a. The sequences of}ornplex numbers @ = {a,} with || 2] =
2] @ | < o andpwith multiplication 4 x & defined by
”\:\(@ * 5)71 = Zg::i_: IIQ:@—:ﬁnaésm-
Here we hg}é;"the group G of integers as a measure space, the
measure ofeach point being 1. The norm is simply the Z! norm,
|| a H\é\j; | 2], and the algebra is LY(G). Its multiplication as

defined above is called convolution. We shall omit checking the
algebraic properties of convolution, but it should be noticed that
the norm inequality llaxé|| < ||a]|ll| 2] arises from the re-
versal of a double summation, which is a special case of the Fu-
bini theorem:

{axb]| = Sul St | € S (S | nmin )
= Salaalllall = sl
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Tt is clear that the sequence ¢ defined by ¢y = 1 and e = 03f

n 5 0 is an identity for this algebra. o
3b. L1(—w, w) with convolution as multiphcation:

gl = [ s = e

Here the group is the additive group of the real numbcrsl, w'ithl orclli-
nary Lebesgue measure. The inequality || /g lli £ 11/ \EH g\l‘l
is again due to the Fubini theorem:

l‘f*&'”l D

N

~ | x — dy | dx [ X *‘\‘)( )| dxdy
R J;lfwf( o) dy | éf_wf_a,‘-’ff;\a Pty
o= g e ‘

In each of 3a and 3b the measure q;Q‘d‘\ls the so-called Haar
measure -of the group. \Y;

- The following are examples of important types of Banach al-
~gebras with which we shall be léss concerned.

. 4 The complex-valued fihctions continucus on the closed

unit circle {| z{| <1 ant{‘énalytic on its interior || 2 || < 1, under
the uniform norm. , .

5. Th? Complex-bgh;ed functions on [0, 1] having continuous
first derivativesywith || 1| = 1] / {lo 4 1| /|-
. N\

\"\ §19. FUNCTION ALGEBRAS

Thg’\?mbedding of a Banach space X in its second conjugate
'spzig:e. X*%, that is, the representation of X as a space of line@‘
\Tuhctlonals over the Banach space X*, is an important device 10
the general theory of Banach spaces. In Gelfand’s theory of 2
commutative Banach algebra 7 the corresponding representation
1s all-important. We consider now the space A of all continuous
homomarphisms of 4 onto the complex numbers, for every ¥ €
the funf:uon % on A defined by #(h) = A(x) for all # € A, and the
a.‘lgebrfuc komomorphism of A onto the algebra £ of all such func- .
tions £. It is clear that A is a subset of the conjugate space
of A4 considered as a Banach space, and the function # is obtaine
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by taking the functional **, with domain 4%, and restricting its
domain to A. This change of domain greatly changes the nature
of the theory, For example, A is a weakly closed subset of the
closed unit sphere in #* and is therefore weakly compact. More- -
over, the linear character of #** becomes obliterated, since A has
no algebraic properties, and # is merely a continuous function on
a compact space. The more nearly analogous representation
theoremn for Banach spaces would be the fact that, if x° is thieh
restriction of x** to the strongly closed unit sphere in A%, theh
the mapping x — x° is a linear isometry of X with a Banach
space (under the uniform norm) of continuous complex-valued
functions on a compact Hausdorff space. But, whereas this rep-
resentation theorem for a Banach space is devoiddefimplication
and is of the nature of a curio, the correspondidg representation
% — £ of a commutative Banach algebra bysan algebra of func-
tions is of the utmost significance. Thusltfte representation al-
gebra 7 is the vehicle for the developmentof much of the theory
of Banach algebras, and the transformation » — # is a generali-
zation of the TFourier transform. a\" R

If cur sole concern were thebeommutative theory we ‘would
take the simple concept of alfunction algebra as central and let
the theory grow around i€ We shall not adopt this procedure
because we want to inélade a certain amount of general non-
commutative theory,{ However, we shall start out in this sec-
tion with some githple observations about function algebras,
partly as motiy4#ion for later theory and partly as first steps in
the theory ifsélf,

19A. A homomorphism 4 of one complex algebra onto another
1s, of gqm';'se; a ring homomorphism which also preserves scalars:
}1(7\%‘)\—;‘: Mi(x). The statements in the following lemma are
obvious,

Lemma. Letw — % bea homomorphism of an algebra A onto
an algebra 4 of complex-valued functions on a set S. If p is a point
of 8, then the mapping x — X(p) is a homomorphism hy, of A inio -
the complex numbers whose kernel is cither a maximal ideal M, of
deficiency 1 in 4 or is the whole of A, The mapping p — hy, im-
beds S (possibly in a many-fo-one way) in the set H of all homo-
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morphisms of A4 into the complex numbers. Conversely, if § is any
subset of H and if the function £ is defined on § by £(h) = h{x} for
cvery b € 8, then the mapping x — i is a homomorphism of A
‘onta the algebra 4 of all such functions.

A pseudo-norm is a non-negative functional which satisfies all

“the requirements of a norm except that there may exist non-zero
« such that || x || = 0. A pseudo-normed algebra has the obvious
definition. The inequalities ||x+y[{ = || %]\ + [iy]l alﬁ
Hay|| < || %] |y || show that the set 7 of all x such chaflyx ||
= Ois an ideal in 7. Moreover || » || is constant on each_¢oset of
the quotient algebra 4/7 and defines a proper normdthere. Any
linear mapping with domain 4 which is bounded ¢¥ith respect to
the pseudo-norm is zero on J and therefore by D is transferable
to the domain 4/I without changing its norm»" In particular the
conjugate space 4* is thus identified witl}'\:(s%/f) *,

' Lemma If tbAe algebra 4 in the czaﬁpﬁ.{ Yemma consists of bounded
fum_tw?u,.b’zm A defines a pseudo ulpm in A, x|} = [| ]l and
the mapping p — hy identifies S\with a subset of the unit sphere
in the conjugate space A* of 4"

‘Proof. Obvious. N\
ke
19B. The following\tmeorem is very important for our later

work. It is our meplacement for the weak compactness of the
unit sphere in ,<f‘*\

: Tl.leore,%l..\’f f A is a normed algebra and if A is the set of all
coniinuons homomorphisms of A onto the complex numbers, then A
is logally compact in the weak topology defined by the functions of

NI A bas an identity, then A is compact. If A is not compact,
then the functions of 4 all vanish ot infinity.

thProof._ If € A, then its nullspace M is a closed ideal and
e qiuotlent space 1 a normed linear space isomorphic to the
;:;)mpdex lllur'nber field. If E is the identity coset, then A{x) = A
1esznth2;1 i‘ if ¥ € )\f I_\Tow E cannot contain elements of norm
s Contas;mc? otherwise, be.mg f:losed under multiplication, it
o nelements of arbitrarily small norm. In general, if
then #/N € E, || %/A | 2 Tand || 2] 2 | 7] = | 4@) |-
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Thus |[ 2] £ 1 for every 4 € A, and A is a subset of the unit
sphere §; of 4* We know 8, to be weakly compact (9B) and
therefore the closure & of A in §, is compact,

Now the same argument as in 9B shows that, if ¥ € A, then
£is a homomorphism. In fact, if x, y and e are given, there ex-
ists by the hypothesis that F € A and the definition of the weak
topology an element % & A such that [ Flx) — Ax) | < ¢,
| F(y) — A(y) | < ¢ and | Fuy) — A(xy) | < e Since Alxy ) &N
£(x)A(y), it follows that | Fley) — W F(y) | < e for every ‘e,
and therefore that F(xy) = F(x)F(y). Thus either 7 is-a non.
zero homomorphism and F € A, or F = 0, A

We thus have two possibilities: either & = A and Avis compact,
which occurs if the zero homomorphism %, is notiin” the closure
of A, orelse & = A U {4} and A is a compacsspace minus one
point, and hence locally compact. In thesécond case every
function £ € 4 vanishes at infinity, for£\s continuous on the
one-point compactification & = A U {h'and #(x0) = ko(x) = 0.

If 4 has an identity e, then (%) =) =1forall 2 € Aand
it follows that 3(F) = F(¢) = 1 forvany F € A. This rules out
the possibility that 4, € A, sosthat the first case occurs and A
is compact. This completeséthe proof of the theorem. -

A by-product of the abn@fe\proof is the fact that [| £ ]|, = || » ||
for every x € 4. We thus have a standard norm-decreasing rep-
resentation of a normed algebra 4 by an algebra A of continuous -
complex-valued fuiétions on the locally compact Hausdorff space -
4 of all contin,u(g,l}s{'hamomorphisms of A onto the complex num-
bers. We shaltcall this the Gelfand representation of 4.

In the sifitple case of a normed linear space which we sketched
f:a.rlie;'\th;é'mapping ¥ — %% was an isometry roughly because
therdexist lots of continuous linear functionals {8C). Now it is
obviously harder for a functional to be a homomorphism than to
be merely linear; in fact, there may not exist any non-zero homo-
morphisms at all. In any case the set A is sparse compared to
the unit sphere, of #* and we must expect that the Gelfand rep-
resentation is in general norm decreasing and that there may be
% such that # = 0. If the mapping is one-to-one (although prob-
ably norm decreasing), £ will be called a function algebra, and will -
generally be replaced by the isomorphic algebta of functions 4.
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19C. The correspondence 42 — 34, between a homomorphism
and its kernel aliows us to replace A by the set 9 of all closed
maximal ideals of 4 which have deficiency 1 as subspaces. In
general there will exist many other maximal ideals, some not
closed and some not of deficiency 1, which therefore do net corre-
spond to points of A. It is very important for the successful ap-
plication of the methods of algebra that this cannot happen if
A is a commutative Banach algebra with an identity; now eyery
maximal ideal is closed and is the kernel of a homomorphisni of
A onto the complex numbers. This will be shown laterfor the
- general case; we prove it here for the special algebra. which in the
light of the above lemma must be considered as the fsir:nplest kind
of function algebra, namely, the algebra e(S),ef all continuous
complex-valued functions on a compact Hausderft space 5.

N
Theotem. If § is a compact Hausdag'ﬁ\ space and if I is a
praoper ideal of ©(S), then there exispNd point p € § such that
I © My, IfIis mawimal, then T =\M,. The corvespondence thus
established between maximal fdegffjof C{S) and points of § 15 one-
to-ome. Q"

*

Proof. Let I be a praper ideal of €(§) and suppose that for
every p € § there exists /£, € I such that f,(p) 0. Then
| f.”-lz =fofs €1, l)}\P 2 0and | f, |2 > 0 on an open set con-
taining . By the-Heine-Borel theorem there exists a function
JSe&la ﬁnite'é“}m of such functions | £, |2, which is positive on
S:' The,nf:.l’\e e(8),1 =ff €I and e(S) = I, a contradic-
tion. ’I;EG"‘?{OTC; I_C M, for some p, and, if 7 is maximal, then
L= f‘.@' Finally, if p 5 ¢, then there exists € ©(S) such that
FED= 0 and flg) # 0 (see 3C) so that M, M, and the map-
Bidg p — M, is one-to-one.

19D. We proved above not only that all the maximal ideals
Of ©(5) are ‘Closed and of deficiency 1 but also that they are all
g}llven by points of 8. In the general theory of function algebras
ciese o properties can be separated. Thus it follows from
ilmple lemmas proved later (21D-F) that, if 4 is an algebra of
Ofoilr:éi? fanctions, then every maximal ideal of £ is closed and
bas G ency 1 prowlded A s inverse-closed, that is, provided A

pProperty that whenever f € 4 and glb [ f] >0, then
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" 1/f € 4. We can then separately raise the question as to when
an inverseclosed algebra 4 of bounded functions on a set § is
such that § = A. A necessary condition (supposing that 4 has
an identity) is clearly that § be compact under the weak topology
defined by A, so that in view of 3G we may as well suppose that
we are given a compact Hausdorff space § and a separating, in-
verse-closed algebra of continuous functions on §. This is not
sufficient, however; we still may have § = A. If we add one\
further property to 4, the situation suddenly becomes again yery
simple, We define a function algebra 4 to be .fe{f-aa_’;fgx'm‘,\if
fe€d = fed O\

Lemma, If A is a separating, self-adjoint, inverse-tosed algebra
of continuous complex-valued functions on a compdct space S, then
every maximal ideal of A is of the form M = My for some p € 8.

In particular A = §. \\

Proof. Identical with that of the above theorem in 19C.

Corollary. If A4 is a '.repamz‘z'z’zg;ss}ea_’f-azﬁofm, inverse-closed al-
gebra of bounded complex-valuedFunctions on a set S, then § is
dense in A,

O

Proof. If§ is the closire of 8 in 4, then § is compact and the
above lemma applies €0 the extensions to 3 of the functions of 4,
proving that § =>A%s required.

A topology 5@n"a space § which is completely determined by
1ts continuo zsomplex-valued functions is said to be completely
regular. Bynthis condition we mean that 5 is identical with the
weak topology 5., defined on § by the algebra @(S) of all bounded
complrakfvalued dcontinuous functions, Since the inclusion
Jw C U always holds, complete regularity is equivalent to the in-
clusion 5 Jw, and it is easy to see that a necessary and sufficient
condition for this to hold is that, given any closed set € and any
point p & C, there exists a continuous realvalued function f
such that £ = Q on € and f(p) = L.

If §is completely regular, then the above corollary applied to
e(S) gives an imbedding of § as a dense set of the compact Haus-
dorff space A such that the given topology of § is its relative to-
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pology as a subset of A. This is a standard compactification of a
completely regular space.

19E. The fact that the property proved in 19C for the alge-
bra e(8) of all continuous complex-valued functions on a com-
pact Hausdorff space § 1s now seen (in 19D) to hold for a much
more general class of function algebras suggests the presence of
further undisclosed properties of &{S). We consider two here,
starting with a relatively weak property which e(S) also shargs
with many other function algebras. In order to present these
properties in a form most suitable for later comparison wigh dther
algebras we make the following general definitions. ("~

\ ¥

Derinition. In any ring with an identity the z;%ér;z:é! of a set
of maximal ideals is the ideal which is their im}fsection. The
hull of an ideal I is the set of all maximal ideals ‘which include 7.

. . 5o MR
The reader is reminded of the other.dohventional use of the
word “kernel,” as in 10A. o\

Theotem. If B C S, then B =uhull (kernel (B)).
Proof, Let Iy be the keqpeiféf B.
Iy = {fij{ie;,\e(S) and f=0on B}.

_ N

If -C' = B, then IB';}U, for a continuous function vanishes on
B'if and only if @ Vanishes on B = €. If p is not in C, there
exists by 3C acortinuous function / which vanishes on € (f € I¢)
but not at S € 1,). Thus Iy < I, if and only if p & C, and
hull (70)=C.  Altogether we have 5 — C = hull (Z¢) = hull
(Zz), grerd.

~1\9}F.‘ We saw above that a subse
space § is closed if and onl
when it is considered as
€(S). Now this hull-k

t of a compact Hausdorff
y if it is equal to the hull of its kernel,
a set of maximal ideals in the algebra
( ernel definition of closure can be used to
Lntroc]:uce a topology. in the space of maximal ideals of any alge-

ra with an 1denFity. This will be discussed further in 20E; our
bresent concern is the comparison of this hull-kernel topology
e, defined on a set § by an algebra 4 of complex-valued func-

tions on §, with the weak topology 3., defined by 4, or with any
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other (stronger) topology..ﬁ in which the functions of 4 are all
continuous. We prove the following theorem.

Theorem. If A4 is an algebra of continuons comples-valned
Junctions on a space S with topelogy 3, then 3 = 5y, if and only if
Jor every closed set C C 8 and every point p not in C there exists
S &€ A such that f = 0 on C and f(p) # 0.

Proof. We first remark that since there may be maxinral
ideals of .7 other than those given by points of § it is the inber-
section with § of the actual hull that is referred to hera;,\' Tt €
‘be Gup-closed; that is, € = hull (I) where 7 = kernel (&Y. Now
the set of maximal ideals containing a given elemént)f € 4 is
simply the nullspace of the function f and is therefore closed.
The hull of 7, being the intersection of theséatllspaces for all
S €I, is therefore closed. Thus every hull-kérnel closed set €
. " 4 \
1s also closed and we have the general inclusion 5, < 3.

The theorem therefore reduces to finding the condition that a
closed set € be the hull of its kernely But the kernel of Cis the
ideal of elements f € 4 such thatf = 0 on C, and the hull of
this ideal will be exactly C if aad only if for every p & C there
exists f in the ideal such that /{p) = 0. This is the condition of
the theorem. N

If 4 = ¢e($) in the m\ﬁc’ive theorem, then the condition of the
theorem is exactly ‘the one characterizing completely regular
spaces. Thus for'@ completely regular space 5 = 3, = Sp. A
function algebray# which satisfies the above condition is called
a regular fum€tion algebra.

19G. THe following result is much less susceptible of generali-
zation,&é(h that in 19E. The extent to which it holds or fails
to #old”in such regular algebras as the algebra of Z'-Fourier
transforms over (-, «©) is related to such theorems as the
Wiener Tauberian theorem.

Theorem. If § is a compact Hausdorff space and I is a uni-
Jormly closed ideal in ©(8), then I = kernel (hull (I)).

Proof. Let C =hull (I), C = {p:f(») =0 for all St
Since each f € I is continuous the null set (hull} of 7 is closed,
and C, the intersection of these null sets, is therefore closed. Let
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§; be the space § — €. Then § is locally compact and the func-
tions of Je, confined to §,, form the algebra of all continyous
functions which vanish at infinity (see 3D). The functions of 7
form a uniformly closed subalgebra of 7o, Let p; and p, be dis-
tinct points of §; and let / be a function of €(§) such that f = 0
on C, f(pa) =0 and f(p,) = 1. Such a function exists by 3C.
Let g be a function of 7 such that g{p,) = 0. Then gf € 1,
gf(p1) # 0 and gf(ps) = 0. Therefore by the StoneJVeierstrasi
theorem, 4E, we can conclude that 7 = I, q.e.d. .
AN
R
§20. MAXIMAL IDEALS A
We begin the general theory with some resultsz'gm maximal
ideals in arbitrary rings and algebras. The.Mdllowing simple
theorem is perhaps the basic device in the abstract development
of harmonic analysis which we are pursuing)“Its proof depends
explicitly on Zorn’s lemma, O

_ 20A. Theorem. Iz a ring with mg;,z'.::fe}ztz'ty every proper (right)
ideal can be extended to a maximal Droper (right) ideal.

Proof. We consider the famiiyn§ of all proper (right) ideals in
the ring R which includes tle.given ideal 7. This family is par-
tially ordered by inclusiom™ The union of the ideals in any lin-
early ordered subfamlly\kan ideal, and iS proper Sil’lCE it eXCIUle!S
the identity. Therefore, every linearly ordered subfamily has an
upper bound in $%ahd ¥ contains a maximal element by Zorn’s
lemma, g.e.d, /0~ ’

20B. If.ﬂ\:a\dés not have an identity,

\ the above proof fails be-
cause thet thion of 2 linear!

X y ordered subfamily of § cannot be
shown 16 be a proper ideal. However, the proof can be rescued
i @as 2 (left) identity modulo 1, that is, an element # such that
ux =% € I for every x € R, for then # has the necessary prop-
erty of being excluded from every proper (right) ideal J including
@€ and ux —x €T = 4 € J for every x ¢ R, contra-
dicting the assumption that J is proper), and the same proof
goes through using # instead of e. A (right) ideal 7 modulo which
R has a (left) identity is said to be regular. We have proved:

Theorem. J.Ever_y proper regular (vight) ideal can be extended to
a regular maximagl (right) ideal.
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20C. We shall find throughout that the presence of an iden-
tity in an algebra makes the theory simpler and more intnitive
than is possible in its absence. It is therefore important to ob-
serve, as we do in the theorem below, that we can always enlarge
an algebra deficient in this respect to one having an identity,
and we shall use this device wherever it seems best to do so.
However, in many important contexts this extension seems un-
natural and undesirable, and we shall therefore carry along a
dual development of the theory so as to avoid it wherever feasi%)e.

Theorem. If A is an algebra without an identity, then z\f can
be imbedded as a maximal ideal of deficiency one in g dlgebra A,
having an identity in such a way that the mapping'l, — I =
A N1, is a one-to-one correspondence between$be family of all
(right} ideals I, in A, which are not included A and the Jamily
of all regular (right) ideals I of A. 7\

Proof. The elements of .4, are the tm%ered pairs {x, A), where
® & A and X is a complex number,\ Considering (¥, A} as x + A,
the definition of multiplication iglobviously (x, A)(y, »} = (xy -+
Ay + px, Mu); we omit the routine check that the enlarged system
A, is an algebra. 1t is clgat that (0, 1) is an identity for 4, and
that the correspondencg#— (x, 0) imbeds £ in 4, as a maximal
ideal with deficiency® I\ ™
Now let I, be afty (right) ideal of A, not included in 4 and
let 7 =1, N A7, must contain an element v of the form
{x, —1). THhel the clement u = v - ¢ = o, 0 € A is a left
identity fqr\fe m A, (uy —y={(u—ey =9y Cl, for al
¥ € A)and hence automatically for 7 in 4. Thus 7 is regular
in A Wloreover, since uy —y € I, and uy € A4 for all y, we
S%;thatj’ € I, ifand only if uy € .
onversely, if I is a regular (right) ideal in 4 and u = (x, 0)
is a left identity for I in ., we define 7, as {y: uy € I}. Direct
consideration of the definition of multiplication in .7, shows that
I 15 a (right) ideal in 4,; hence 7, is a (right) ideal in 4,. It is
not included in A since #{x, —1) = #(¢ — ¢) = #® — u € I and
therefore # — ¢ = (x, —1) € I,. Moreover, the fact that
uy —y € 1 for every y € A shows that y € 7 if and only if
uy Clandy € 4,ie, I =1,N 4.
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Tauberian theorem. We define a ring R to be semi-simple if the
intersection of its regular maximal ideals is zero.

Lemma. If I and J are ideals with disjoint hulls and [ is regu-
lar, then I contains an identity moduly J.

Proof. An identity ¢ modulo J is also an identity modulo
I+ J,and I 4 [ is therefore regular. But by hypothesis I-£Y
is included in no regular maximal ideal; therefore 7 + B R,
and in particular there exist 1 ¢ Jand j € [ such that -87"= &
The clement 7 = ¢ — j is clearly an identity modulo.f, g.e.d.

Theorem. Let R be a semi-simple ring, I an ideal in R and U
an open set of regular maximal ideals such hat A1) c U and
k(U"} is regular., Then k(U) < 1. AN

Proof. The hypothesis that 7 is les’éR is equivalent to U’ =
A(J), where | = k(U'). Thus I and™f have disjoint hulls and
by the lemma I coutains an identity modulo /, say 7. If x €
k(U) it follows that ix — » bilengs to every regular maximal
ideal, and since R is semigifiple this means that 7x — ¥ = O.
Thus # = ix € 7, qe.d.

- We include the folloying variant largely for comparison with
the later theory of ¥egtilar Banach algebras.

Theorem. LR be 4 commutative semi-simple ring and let 1

be an ideal u{R Then I contains every element x such that h(I) <
int A{x} %&mck that x = ex _for some ¢ € R.

Progk: If C'is the complement of 4(x) and J = A(C), then the
f{@\g hypothes;s says _that { and J have disjoint hulls. The sec-
ond hypothesis implies that » is an identity modulo J, though

this is by no means immediately obvious, It depends on the
following lemma,

Lemma. Two subsets of a s

B emi-simple commutative ring R an-
nihilate each other if and only 4 ative ring

if the union of their hulls is R.
Proof. If x and y are elements
such that A(x) U #(y) = R
glﬂnhx}’ bel-or%gs to every regular maximal ideal(azad so():gv = 02
y the semi-simplicity of R, Conversely let .7 and B be subsets
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of R such that 4B = 0. If A(A) U h(B) # R, then there exist
a regular maximal ideal M and elements ¢ € 4 and & & B such
that neither 4 nor 4 belongs to . Thus neither 4 nor & is zero
modula M whereas a4 = 0, contradicting the fact that R/M is
a freld.

Returning now to the theorem, the fact that x(ey — 3) =
(xe — x)y = 0 implies by the lemma that ¢y — » belongs to.every
regular maximal ideal which does not contain x and hence “Be-
longs to /. Thus ¢ is an identity modulo Js and x € T gxaetly
as before, O

20G. We conclude this section with the theorem (o ‘the per-
sistence of the hullkernel topology under homonqqi’phisms.

Theorem. If I is a proper ideal in a ring ™SRy then a subset of
R/T is an ideal in R/T if and only if it is pfthe form J/T where
J is an ideal of R including I J/1 is xegtlar and/or maximal in
R/T if and only if J is regular and/orimaximal in R. The space
of regular maximal ideals in R/I thus torresponds to the hull of T
in the space of regular maximal ideols of R, and the correspondence
s a homeomorphism with respedho the hull-kernel topologies.

Proof. Direct Veriﬁcagiozﬁ.
,\'\‘..
§$2). SPECTRUM; ADVERSE

In this sectiot\:{vg shall add to our repertoire the two very im-
Portant notions“of spectrum and adverse. These concepts arise
naturally Qms\if the question as to what can be meant in general
by the statement: the element » assumes the value A This
shoyldhive the same meaning as the statement that ¥ — Ae as-
sumés/the value 0, and should reduce to the ordinary meaning
in the case of our model algebra e(8) of all continuous functions
on a compact Hausdorff space. In this case there are two ob-
vious algebraic formulations of the statement: first, that & — A
belongs to some maximal ideal, and second, that (¥ — A\)~! fails
to exist. We show below that these two properties are equiva-
lent in any algebra, so that either can be taken as the desired
generalization. We set y = & — Ae, and prove the equivalence
for y in any ring with an identity.
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We have thus established a one-to-one inclusion preserving
correspondence between the family of all regular (right) ideals in
A and the family of all (right) ideals of . not included in 4.
In particular the regular maximal {right) ideals of - are the in-
tersections with 4 of the maximal (right) ideals of 4. different

" from A.

Corollary. If S is a Jocally compact but not compact Hausdorff
space and ©(S) is the algebra of continuous complex-valued JuntN
tons vanishing at infinity, then the regular maximal ideals of j€(8)
are given by the poinis of S in the manner of 19C. N\

N\

Proof. The extended algebra is isomorphic to the * algebra
C(S») of all continucus complex-valued functior;s: on the one
point compactification of §, under the correspofidence {(f, A) —
S+ A In the latter algebra e(§) is the maximal ideal corre-
sponding to the point at o, and its otherﬂ'ﬁx’imal ideals, corre-

sponding to the points of §, give the yéghlar maximal ideals of
e(S) by the above theorem. \ 7

. ZOD.' If M is a regular ideal i a commutative ring R, then M
‘is maximal if and only if R/M:z'.f a field.

Proof. I-f R/M has a-proper ideal J, then the union of the
cosets In 7 is a proper @eal of R properly including M. Thus M
15 maximal in R if agt only if R/M has no proper ideals. There-
fore, given X ¢ RIM and not zero, the ideal {XY: Y € R/M]
1s 'the wh.ole (ifﬁy’M. In particular, XY = E for some Y, where
E is the 1@@’(}' of R/M. Thus every element X has an inverse
and R/Mis'a field. The converse follows from the fact that a
field !1@;_31'10 non-trivial ideals.

.Ifsﬁ 1s an algebra over the complex numbers, then the above
field'is a field over the complex numbers. I1f R is a Banach al-
gebra_, we shall see in § 22 that this field is the complex numbef
field 1tself,.and we shall therefore be able to proceed with our
representation program.

20E. We conclude this section with some simple but important
properties of the hull-kernel topology, taken largely from Segal
[44]. If o is the set of regular maximal (two-sided) ideals of 2
ring R and B < 9w, we have defined B as 4(k(B)) = hull (kernel
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(8)). In our earlier discussion it was unnecessary to know that
the operation B — B was a proper closure operatlon Actually,

the properties 4 © B = 4 c Band B « B = B follow at once
from the obvious monotone properties 4 © B = &(B) < k(A),

and / © J = A(J) < A(I). However,thelaw 4 U B =4 U B
is more sophisticated, and we present a formal proof.

Lemma. [f A and B are closed subsets of M, then A U B is
closed. S

Proof. Suppose that ./ U B is not closed. Then theréd Sxdsts
M & msuch that (A U By cMand Mg 4 U B, Smce.ffm
closed, #(4) ¢ M and so k(A4) + M =R, If ¢ ig, ‘an’ identity
modulo M, it follows that there exist 2 € k(z{)\ﬁnd m &M
such that ¢ = 4 4 m;. Similarly, there efidtvé E F(B) and
my € M su(,h thate = & + m,. Multlplymg@eget ¢? — ab € M,
and since ¢2 — ¢ € M we see that 2 1 13, zm identity modulo M.
But a4 € M (since ab € k(A N k(B) ='k(4 U B) < M), and
this is a contradiction. ®

Remarks: The reader should notu:e that this proof 1s not valid
in the space of regular ma)umal right ideals, since we then can
conclude neither that ¢ — 4b & M nor that ab € M., The no-
tion of hull-kernel closure“\s still available, but we cannot con-
clude that it defines a topology.

We also call explicitly to the reader’s attention the fact that
every hull is closgd$ This, like the elementary topological prop-
erties listed bef\l*e the above lemma, is due to the inclusion re-
versing natire/of the hull and kernel mappings. Thus if € =
hull 7, thenJ < #(C) and A(k(C)) c A1) = C, or C < C, as re-
qulred \Simllarly any kernel is the kernel of its hull.

@E ) We saw above in 19G that T = 2(A(7)) if T is a closed
ideal 1n the algebra €(S) of all continuous complex-valued func-
tions on a compact Hausdorff space §. This result does not hold
for ideals in general rings, even when they are closed under suita-
ble topologies. The best general result of this nature is the fol-
lowing theorem, various versions of which were discovered inde-
pendently by Godement, Segal, and Silov. It is the algebraic
basis of that part of harmonic analysis exemplified by the Wiener
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Tauberian theorem. We define a ring R to be semi-simple if the
intersection of its regular maximal ideals is zero.

Lemma. If I and [ are ideals with disjoint hudls and J is regu-
lar, then I contains an identity modulo J.

Proof. An identity ¢ module J is also an identity modulo
I+ J,and I 4 [ is therefore regular. But by hypothesis 7 + J
is included in no regular maximal ideal; therefore 7 + J.=<R,
and in particular there exist / € 7 and j € J such that ; Y= e
The element i = ¢ — j is clearly an identity modulo Jyqueid.

Theorem. Let R be a semi-simple ring, I an idedl Y R and U
an_open set of regular maximal ideals such that W(I) c U and
k(U") is regular. Then H(U) c 1. \%

Proof. The hypothesis that U’ is clos };\\s'equivalent to U =
A{(J), where J = H(U)., Thus I and Y have disjoint hulls and
by the lemma I contains an identigpvinodulo J, say 7. If x €
k(U) it follows that ix — » belongs to every regular maximal
ideal, and since R is semi-sipiple this means that ix — x = 0.
Thus x = ix € I, q.ed. N

We include the followiAg: variant largely for comparison with
the later theory of I‘G{lﬂﬂ.i‘ Banach algebras.

Theorem. Lot RV%e a commutative semi-simple ring and let 1

_5.9 an ideal in RN Then I contains every element x such that A(I) C
int A(x) angiéy}k that x = ex for some ¢ C R.

Pr°9£;t“§f C'is the complement of A(x) and J = &(C), then the
ﬁrSt: J{YPOtheS_IS says that 7 and J have disjoint hulls. The sec-
%gd)h}’pothesm implies that ¢ is an identity modulo /, though
t

$ is by no means immediately obvious. It depends on the
following lemma.

Lemma. Two subsess of a s

e emi-simple commutative ring R an-
nihilate each other if and only ¢

if the union of their hulls is R.

hPrt::of. If x and ¥ are elements such that 2(x) U A(y) = &,
then xy bel.ongs to every regular maximal ideal and so xy =0,

by the semi-simplicity of R, Conversely let 4 and B be subsets
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of R such that 4B =0, If A) U A(B) 5 R, then there exist
a regular maximal ideal M and elements 2 € 4 and 4 € B such
that neither 2 nor 4 belongs to M. Thus neither 4 nor & is zero
modulo M whereas 24 = 0, contradicting the fact that R/M is
a field,

Returning now to the theorem, the fact that x(ey —y) =
(xe — %)y = O implies by the lemma that ey — ¥ belongs to every
regular maximal ideal which does not contain # and hence Je*
longs to /. Thus ¢ is an identity modulo /, and x € 7 exactly
as before. o\

20G. We conclude this section with the theorem ©oh the per-
sistence of the hull-kernel topology under homomerphisms.
A\

Theorem. If I is a proper ideal in a ring Rovthen a subset of
R/T is an ideal in R/I if and only if if is oéx{)ée Jorm J /T where
J is an ideal of R including I. J/I is 'regs(f&r and/or maximal in
R/L if and only if J is regular and) or wgaximal in R. The space
of vegular maximal ideals in R/T thys torresponds to the hull of T
in the space of regular maximal idedls of R, and the correspondence
15 8 homeomorphism with re5peck 0 the hull-kernel tupologies.

Proof. Direct veriﬁcatimag.
)

&
§21. " SPECTRUM; ADVERSE

In this section wé-shall add to our repertoite the two very im-
portant notiop{,;}af speetrum and adverse. These concepts arise
naturally outief the question as to what can be meant in general
by the statement: the element x assumes the value A. This
should fraVe the same meaning as the statement that x — Ae as-
suntes the value 0, and should reduce to the ordinary meaning
in the case of our model algebra ¢(S) of all continuocus functions
on a compact Hausdorff space. In this case there are two ob-
vious algebraic formulations of the statement: first, that ¥ — )\
belongs to some maximal ideal, and second, that (x» — A}~ fails
to exist. We show below that these two properties are equiva-
lent in any algebra, so that either can be taken as the desired
generalization. We set ¥ = x — he, and prove the equivalence
for y in any ring with an identity.
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21A. Theorem. If R is a ring with an identity, then an element
y has a right inverse if and only if y lies in no maximal right ideal.
If y is in the center of R, then y " exists if and only if y lies in no
maximal (two-sided) ideal.

Proof. If y has a right inverse z and lies in a right ideal I,
then ¥z = ¢ €I and I = R. 'Thus y can lie in no proper right
ideal. Conversely, if ¥ does not have a right inverse, then the
set {yz:z € R} is a proper right ideal containing y, and can"be
extended to a maximal right ideal containing y by 204%, *Thus
the first statement of the theorem is valid. The same\probf holds
for the second statement, needing only the additioqal;rémark that
since ¥ now is assumed to commute with every,élement of R the
set {y2: 2z € R} is now a two-sided ideal. '

21B. If x 1s an element of an algebra Awrith an identity, then
the set of all X such that (x — he) ! dofs“not exist, corresponding
to the range of f in the case of the algéb}a e(8), 1s called the spec-
trum of x. N

If 4 does not have an identity, we define the spectrum of an
element & to be that set of\@mplex numbers which becomes the
spectrum of x in the abeVe sense when A is enlarged by adding
an identity, as in 20Ca:’z\

In this case A f\&\ﬁust always be in the spectrum of an ele-
‘ment x, for an glethent » € 4 cannot have an inverse in the ex-
tended algebra\?, (x(y + Ne) = ¢ = ¢ = xy + W € 4). More-
over the .ngzl\-iero spectrum of & can still be determined within
4 by tephrasing the discussion of (¥ — Ae)~™* so that ¢ does not
occugyMn fact, after setting » = Ay and factoring out \, we can
}i’flPe'(.}’ — €)%, if it exists, in the form # — ¢, and the equation
) (J" — &){#t — ¢) = ¢ becomes y + u — yu = 0, the desired condi-
tion. Such an element » must belong to A4, for # = yu -y €A
The following definition is clearly indicated.

In any ring R, if » + ¥ — %y =0, then ¥ is said to be a right
adﬂ”‘f.g of %, and x is a left adverse of y. We shall see below
that, if % has both right and left adverses, then they are equal
and unique, and this uniquely determined element is called the
adverse of x.

The conclusions we reached above now take the following form.
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Theorem. If 4 is an algebra without an identity, then 0 is in
the spectrum of every element, and a non-zero \ is in the spectrum of
% if and only if x/X does not have an adverse in A.

21C. We return now to the proof that right and left adverses
are equal.

Theorem. If an element x has both right and left adverses, ﬂzgq
the two are equal and unique.

Proof. If # and v are left and right adverses of x, tHe the
proof of their equality and uniqueness is equivalent to, the usual
proof that ¢ — # and ¢ ~ o, the left and right inverfes of ¢ — x,
are equal and unique, and can be derived from{that proof by
cancelling out e, N4

A better procedure, which can be systematically exploited, is
to notice that the mapping ¢ — x — «x takés multiplication into
4 new operation ¥ 0y = « + y — xy and’takes ¢ into 0. It fol-
lows at once that x o y is associativeand that O ox = x 0 0 = .
The desired proof now takes the fé;lhwing form:

4u=uo00=no(wor)= (tox)ov=000p = o

21D. If we carry out’t‘hé proof of 21A for an element x — ¢
and then cancel out ¢, We-get the following replacement theorem.

Theorem. [ @I@ "?;z'ng R an element x has a right adverse if
and only if therggnists 1o regular maximal right ideal module which
x 15 a left fd%{itjf.

Proof. I}%c has no right adverse, then the set {xy — y: y € A}
15 a tight ideal not containing x modulo which x is clearly a left
identity (xy = y mod I since xy — v € ), and this ideal can be
extended to a regular maximal ideal with the same property by
20B. Conversely, if ¥ has a right adverse »” and if & is a left iden-
tity for a right ideal 7, then x = #x’ — ' € 7. Then ¥ =xy —
ey — ) € I for every y € K and 7 = R. Thus ¥ cannot be a
left identity modulo any proper right ideal.

If € center (R), then the above theorem has the expected
counterpart involving adverse and regular two-sided ideals. In
particular we have the corollary:
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Corollary. If x is an element of the center of an algebra A and
if N £ O, then N is in the spectrum of x if and only if x/N is an iden-
tity modulo some regular maximal ideal,

21E. Theorem. If P is a polynomial without constant term,
then the specirum of P{x) is exactly P(spectrum (x)).

Proof. We assume an identity, enlarging the algebra if neces-
sary. Given Ag, let u]] (¥ ~ ua¢) be the factorization of P@) —
Aoe into linear factors. Then (P(x) — hoe) ™! fails to exisg if and
only if (¥ — p.e)~! fails to exist for at least one walie of .
Since P(un) — Ao = 0 by the definition of the u,, we Nave shown
that Ay € spectrum P(x) if and only if there q:sfist"s Ho € spec-

Ctrum (%) such that Ny = P(ug), q.e.d. ."’:\\

S
§22. BANACH ALGEBRAS; ELnga\NTARY THEORY

Except for minor modifications thetesults of § 22-25 are due
to Gelfand [12). The principglﬁtiéiriations are the provisions,
such as the use of the adversep¥egular ideals, etc., made to take
care of the lack of an ide!iﬁ*tjr element. ‘The existence of the
identity will be assumed(only in those contexts in which it, or
an inverse, is explicit,lz;?’hlentioned.

In this section jt'is'shown that the set of elements which have
inverses (adversgs)is open, from which it follows that a maximal -
1deal M is clgseéd, and hence that the quotient .4/M is a normed
field.  An‘élementary application of analytic function theory
leads to\the conclusion that there exists only one normed field,
the”c(a:mplex m:arnber field, and this completes the first step in
ouryrepresentation program.

\J22A. The ordinary geometric series can be used in the ordi-
hatry way to prove the existence of (¢ — %)~ ' in a Banach algebra.

Theorem. Ir || <1, then x has an adverse and ¢ — x has
an inverse, given respectively by &' = — 37 x* and (¢ — %) ! =
¢ —x" = ¢+ 3" and both are continuous functions of x.

Proof. If y, = —3™% 4 then om —3al] = || Zop #*|l £

sequence {y,} is Cauchy, and its limit y is given by the infinite
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series — > 7 %' in the usual sense. Then x +y — xy = lim
(¢ + 50 — xy,) = limx* = 0, and ¥y is a right adverse of «.
Similarly, or because y commutes with x, ¥ is a left adverse and
therefore the unique adverse of x. If ¢ exists, then, of course,
¢~y = {¢— %" Since the series is clearly uniformly con-
vergent in the closed sphere |[w || < 7 < 1, it follows that the
adverse (and inverse) is a continuouns function of # in the open
sphere || x || < 1. \
The above geometric series for the inverse (¢ — x) =18, 'the
classical Neuman series in case « is an integral operatofiy"®
Remark: || ' € [ 5 /1 — || » .

22B. Theorem. If y has an inverse, then so zg"a’,g;:y + x when-
ever [l v [l < a = 1/|| y=1 || and || (x T TRSy “ =lx|/

(@ —\|xa. Thus the set of elements having iriverses is open and
the inverse function is continuous on this sei

Proof. I | < |||, then 457 | < ly=+ [l # | < 1
andy -+ » = y(e + (y ') has an idyerse by 22A. Also (y - %)t
=37 = (e + y L)t — Oyetl= —(—y~)'y so that by
the remark at the end of 22A |+ 0" — 37| < | =]
L=t 1l2/¢0 = [ # ] o7l =11 #[l/a = || % [)a, where o =
157 . O

| 22C, Theorem, 1f'y has an adverse, then so does y - % whenever
bell <o = BNy D= and | (v + 2 — 5 || = [l 2]/
(@~ %)a. AFus the set of elements having adverses is open and
the mﬂppiﬁ&i\é ¥ is continuous on this set,

Prook. {7 1| <0 = (11 [/ ()7, then || — | 5
| % “.Uz*][y’ D <1 and # = x — xy" has an adverse by 22A.
uNﬁ-i-x)oy’:x—xy’: u, so that y + x has v o #' as a
right adverse. Similarly y 4+ » has a left adverse, and so a
unique adverse equal toy’ o z’. Finally,(y + %) — 3 = (¥’ o &)
C = =yl sodhat [ (v 4+ #) = 57| < (L |y DI o'
S @+ Dllal/a =T s Telia+1 5 D2/a -
LI+ 1157 (D) = |21/t = | Da
emark: If we take x = Ay, then # = A(y — 3y} = —ny'.
Sherefore [(y 4 W) = yIX = [(=)) — y{—WYIA =
ZE ()™ () ~ (39771 > (32— 5 as A — 0. This
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proves the analyticity of (Ay)" as a function of X, and will be of
use later. '

22D, If u is a relative identity for a proper regular ideal I, then
o(I, ¥} = 1. For if there exists an element x € [ such that
{|]# — x|} <1, then # — x has an adverse «: (# ~ x)a —a —
(# — x) = 0. Since &, xa¢ and ua — a are all in 7, it follows that
u# € I, a contradiction (see 20B). It follows that:

N\
Lemma. If I is a proper regular ideal, then so is its closire I.

. . . . { A
In particular, a regular maximal ideal is closed. A\
N

Proof. I is clearly an ideal, and o(J, #) _Zw.tl"}implies that

p(I, #) = 1 so that I is proper. R
22E. Theorem. If I is a closed ideal zqa Banach algebra 4,
then A/1 is a Banach algebra. \’\ !

Proof. We know already from 6B that /7 is a Banach space.
If X and Y are two of its coséts, then || XY || = glb I xy [[+
¢ € Xandy € Y) < elb (k&N y [} = glb {]|# i € X}
g.lb {H yll:y €Y} = || XN Y. If7is regular and # is a rela-
tive identity, then the {Loset E containing # is the identity of
AT and | E|l = g %|l: x € B} = glb {|| . — 5 ||: » € 1)
= p{I, #) 2 1 bp22D. If A has an identity ¢, then ¢ € E and
HE|| = |||l -,—;'l"’so that in this case || E|] = 1 and we are
done. If 4 does not have an identity, then it may happen that
| E 1> ;1".\’}}11 this case, as we saw in § 18, we can renorm A/
with a;‘ﬁaﬁller equivalent norm so that || £ || = 1.

-~ Lorollary. If Iis a regular maximal ideal and if A is commi-

Neapive, then it follows from 20D and the above theorem that A/1 s
a normed field.

22F, Theorem. Every normed field is {isometricall isomorphic
10) the field of complex numbers. ’

Proof. We have to show that for any element x of the field
there is a .co.mplex number X such that x = xe. We proceed
by contradiction, supposing that x — \e is never zero and there-
fore that (x — Ae)~% exists for every A. But if # is any linear
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functional over the field considered as a Banach space, then
F((x — Ae)™h), as a function of A, is seen by direct calculation as
in 22B to have the derivative Fl(x —xe)™), and is consequently
analytic over the whole plane. Also (x — A)TH = Das A — o,
for (x — Ae)™ = N &/ — )7, and (x/A — e} — —¢ as
A — o by 22A, Thus F((x — Ae)~!) — 0 as A — o and
F({x — 2)™") = 0 by Liouville’s theorem. It follows from 8C.
that (x — Ae) ™! = 0, a contradiction.

Remark: The above proof has not made use of the fact ’th‘at
multiplication is commutative, except, of course, for polyfigmials
in a single element x and its inverse. Thus it actually~hds been
shown that the complex number field is the only norfided division
algebra. O
§23. THE MAXIMAL IDEAL SPACE oOF A COMMUTATIVE BANACH

ALGEBRA \4

23A. We have proved in the prece,d}né section all the ingredi-
ents of the following theorem, which¥is the basic theorem in Gel-
fand’s theory. N\

Theorem, Jf 4 is a comimutative Banach algebra, then every
regular maximal ideal of A s closed and of deficiency 1, every homo-
morphism of A onto thesomplex numbers is continuons with norm
=1, and the carrespdy«:é’;nce b — M, between such a (continuous)
homomorphism atidits kernel thus tdentifies the space A with the
set I of all rg’{\iz]cié maximal ideals.

Proof. 22D-F say explicitly that every regular maximal ideal
s the kefnbl of 5 homomorphism of 4 onto the complex numbers.
Conve ély, the kernel of any such homomorphism is cleatly a
regular maximal ideal. The theorem then follows if we know
that every such homomorphism is bounded by 1 (which is equiv-
.atlent, In fact, to its kernel being closed). The most direct proof
'$ to suppose that | 4(x) | > || % {| for some x and notice that, if
A = A(x), then [l #/X ] < 1, (w/A)’ exists and so A(x/\) 5 1, con-
tradicting the definition of M. .

In clarification of the roles played by the various properties
asserted in the above theorem, we prove the following lemma.
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Lemma. If A is a commautative normed algebra, then every regu-
lar maximal ideal of A is closed if and only if A has the property
that the adverse of & exists whenever || x || < 1.

Proof. We remark first that, if M is a closed regular maximal
1deal with relative identity #, then p(M, «) = 1, for if there ex-
istsx € Msuchthat||x — || =8 < 1,theny = # — (& — &)"
is a sum of positive powers of x and so belongs to M, and || x 2y ||
= || (w — %)™ || £ 8", proving that # € M = M, a contpadic-
tion. Suppose then that every regular maximal ideak telclosed
and that || x|} < 1. Then & must exist, for otherwise x is an
identity relative to some regular maximal 1deal; by 21D, and
L>al =iz =0 = plx, M), contradictifg” the above re-
mark. ’

Conversely, the existence of »' whemever || x| <1 implies
that every regular maximal ideal is closed, exactly as in 22D.

If a commutative normed algebra_hs either, and hence both,
of these equivalent properties théir 22F shows that every regular
maximal ideal is of deficiencyd*and the rest of the above theo-
rem then follows. In partieular, the theorem holds for an al-
gebra A of bounded funuibns which is inverse-closed (see 19D).

23B. Let us revi w(’tlfe facts of the Gelfand representation, re-
placing the underlyihg space A by the space 9 of all regular
maximal ideals(? Yt Fyr be the homomorphism of A whose ker-
ne_l 1s the tgsgular maximal ideal M. The number Fy(x) is ex-
plicitly d€teFmined as follows: if ex 1s the identity of the field
_ff/M: ;é’l%"ifﬁ is the coset of 4/M which contains x, then Fa(x)
is :tbaf complex number X such that ¥ = Aewr. It also follows
from 22E that | Fy(x) | < || x|,

If % is held fixed and A/ is varied, then Fy(x) defines a complex-

Valu_ed fu_nction £ (#() = Far(x)) on the set o of all regular
maximal ideals of 4, The mappi

creasing homomorphism of 4 on
valued functions on M, the unifo
4. 9 is given the weak
fted
either

ng x — £ is then a norm-de-
to an algebra .f of complex-
rm norm || #|], being used in
topology which makes the functions

all continuous, and it was shown in 10B that o is then
compact or locally compact,
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The function algebra A4 is not generally the whole of e{m), -
nor even a uniformly closed subalgebra; it may or may not be
dense in €(M). It always shares with e(an) the property that
its regular maximal ideals correspond exactly to the points of 9.
And A4 is always closed under the application of analytic func-
tions: that is, 1f x € A and f is analytic on the closure of the
range of &, then there exists y € 4 such that (M) = f(#(M)).
These properties are all very important, and will be discussed
in some detail later on, mostly in § 24. O\

The function £ will be called the Fourier transform of the ele-
ment ¥, and the homomorphism x — #(M) = Fy{x) (asﬁgol:iated
with the regular maximal ideal M a ckaracter of theé»algebra 4.
Actually the situation should be somewhat furthetrestricted be-
fore these terms are used; for instance, in sothé contexts it is
more proper to call # the Laplace tmmfomzj?f’ x. This section
will be largely devoted to well-known e)gam\ples illuminating this
terminology. We start, however, with*'a simple preliminary
theorem relating the spectrum of ag.;t'é'"the values assumed by &.

Theorem. T#e range of % 15 elther identical to the spectrum of ¥
0r 1o the specirum of x with théalue O omitted. If % never assumes
the value 1, then (1 — ;?;}é A, If A has an identity and % is
never 0, then 1 JE A \ N

Proof. Tf X = Qpiffien A is in the spectrum of «x if and only if
#/Mis a relative/jdentity for some maximal ideal M, ie., if and
ouly if FM(JC%Z‘".)\"—’_- 1, or #(M) = Fy(x) = \, proving the first
Statement,, S Fo(x) = 0, then x € M and it follows that 0 €
spectr};\m\’ij.) If the spectrum of x does not contain 1, then x
hag &Q ‘aaverse ¥ b}’ 21D, and from a +y—ay = 0 it follows
tha-"tﬁ = £/(# — 1) € 4. The last statement is similarly a trans-
lation of 214, Both of these facts will also follow from the gen-
ZI.:% theorem on  the application of analytic functions, proved in

23C. As a first example let 4 be the algebra of sequences
a =:I{an} of complex numbers such that 32| a, | < 0, with
||.a. it defined as this sum and multiplication defined as convolu-
1o @ % 8), = 2o o ymbm. This was example 3a of § 18..
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The fact that A4 is a Banach algebra under these definitions will
follow from later general theory (of group algebras) and can also
be easily verified directly. 4 has an identity e wherc ¢; = 1 and
¢a = 01f # # 0. Let g be the element of . such that & = 1and
g» = 0 otherwise, Then g has an inverse (g, ™! = 0 unless » =
—land =1if n = —1) and A is simply an algebra of infinite
seties @ = 3,2, a,g" in powers of £, under the ordinary, formal
multiplication of series. Let M be any maximal ideal of rand
let A = Fu(g). Then|A| = |l g]l = 1. But Fyuleg™) = A and
similarly [A7'[ £ 1. Thus || =1 and A = ¢, ot some
b € (—m, w]. Then Fyu(g®) = ™ and Fyl(a) =\ D2 2,
for any a € 4. Conversely any 8 € (—n, 7] defﬁoﬁes a homo-
morphism F of 4 onto the complex numbers, E@)'= 37, a.e™,
and the kernel of F is, of course, a maximalideal of 4. Thus
the space M of maximal ideals can be idenfified with the interval
(—m, x] and the transforms 4 are simplythte continuous functions
on (—, x| having absolutely convergefit Fourier series. If such
a function 4 is never zero, then, by\the above theorem, its recip-
rocal 1/4 is also a function wit‘h'élh’absolutely convergent Fourler
series. This is a well-known result of Wiener.

- Notice that the weak tapology on (—=, #] considered as a set
of maximal ideals is idgn}ical to the usual topology (with = and
—= identified), for #@) = ¢ ig continuous in the usual topology
and separates pojrits so that 5G can be applied.

Now let 4, belthe subset of 4 consisting of those sequeices #
whose terms 4y are all zero for negative 7. Ay 1s easily seen to
be closeqi.\lander convolution and forms a closed subalgebra of 4.
Ao contains the generator g but not its inverse ¢!, and the above
arggrent shows that the homomorphisms of Ay onto the com-
Blex umbers (and hence the maximal ideals of 4,) are defined
by thi complex numbers in the closed unit circle | z | <1, F.(a)
— 2= 2% The maximal ideal space of .7, is thus identified
g::;}}lfll:ftidoseld ILmt grgle '(the spectrum of the generator g) 'and
on|z| < (in\,:hizer’?‘ i) 18 simply the algebra of analytic functions
Since g(z) =z se 2yIors series converge absolutely on | z.| =1

parates points, it follows from 5G as in the

above example that the weak T
i topol < tical
with the usual topology, opology on ] z [ £ 1 13 iden
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The theorem corresponding to the Wiener theorem mentioned
above is:

Theorem. If f(z) is an analyiic function on |z| < 1 whose
Taylor's series converges absolutely on |z} £ 1, and tif f is not zero
on |z | 2 1, then the Taylor's series of 1/f is absolutely convergent
on | z | = 1.

N\
23D. As a third example let 4 = LY —=, w) with [| JAL =
[|£ll, and multiplication again as convolution (f % gy =
f S — 3)g(») dy (Ex. 3bof §18). If ¥ is any hometnorphism

of Z onto the complex numbers such that | F¢/Y| < M7l
then, since F is in particular a linear functionalNin (L')*, there
exists o € L™ with || @], < 1 such that F\(ﬁ)\= Falx) de.
Then QO

| rosstiate T vy =S v = 000 ax
o= Flfg) = FUA)-Flg)
x‘\ L n .
= sy [ a3l dy

O [ [ Hee)aT a3 de s
O\
Thus a(x —k’)'\)= afx)a(y) almost everywhere, and if we accept
for now .Qhé' fact (which will follow from later theory) that « can
be g S’u;méd to be continuous, then this equation holds for all »
and ¥V But the only continuous solution of this functional equa-
tion is of the form ¢°%, and since | €% | < 1, @ is of the form 4y
and a(x) = ¢%*. The above argument can be reversed to show
that every function a(x} = ¢** defines a homomorphism. Thus
the regular maximal ideals of 4 are in one-to-one correspondence
with the points y € (—oo, @) and / is the ordinary Fourier trans-

form, /(y) = ) JSlx)e—%e dx. These functions are easily seen to

be continuous in the ordinary topology of (—, «) and it fol-
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lows as usual from 5G that the weak topology and ordinary to-
pology coincide.

Now let w(x) be a non-negative weight function on (—co, «)
such that w(x + y) £ w(x)w(y) for all x and y, and let 4 be the

subset of functions of L'{—eo, ) such that fu | F(x) |ew(x) dx

< «, with this integral as {| f || and multiplication taken to be
convolution. The closure of 4 under convolution is gnaranfged
by the inequality w(x + y) < w(x)w(y), as the reader capeasily
check. If F'is a norm-decreasing homomorphism of #onto the
complex numbers, then, as above, there exists « E,.{}‘f'\isuch that

lalle = 1and F(f) = | Axalu(x) dx, leadifg this time to
the functional equation alx + ywlx + 5) = a(x)w(vv)a(j’)w(y)-
Therefore, a(x)w(x) = e=*%i# for some s&uch that e~ = ofx).
Conversely, any complex number s Fertsuch that % < w(x)
for all x defines a regular maximal iddak” As an example, suppose
that w(x} = ¢**| for some & > 088 Then the regular maximal
ideals of A are in one-to_one cqr&fé'spondence with the strip in the
complex plane defined b}: 1fj'| £ a. The transform function

S+ i :f f(x)e_(f’i‘ﬁi';if dx 1s a bilateral Laplace transform

and is analytic interiﬁr\to this strip. That the usual topology is
the correct maximalideal topology follows, as in the above ex-
amples, from 3Gy

23E. Wegd}l an example which is a generalization of that in
23C. Lg‘&\d be any commutative Banach algebra with an iden-
tity ai}@ a single generator & It may or may not happen that
g_j.f'\:f})'ust& In any case we assert that the maximal 1deal space
‘ TR.is in a natural one_to-one correspondence with the spectrum

Sofg. For M — g(M) is a natural mapping of 9 onto §, and

ool 8 generates A the equality §(M,) = p(My) implies #(M)) =
#(Ms) for every & € A4 and hence M; = M, so that the mapping
1S one-to-one. As before ¢ becomes identified with the function
2 and the weak topology induced by # is the natural topology of
S. in the complex plane. 4 is identified with an algebra of con-
tinuous complex-valued functions on §. If the interior of § is
not empty (under this identiﬁcation), then £ is analytic on int (§)
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for every x € A, for # is identified with the complex variable z
and £ is therefore a uniform limit of polynomials in z.

§24. SOME BASIC GENERAL THEOREMS

We gather together here the basic tool theorems of the com.
mutative theory, First comes the formula for computing || # |,
in terms of || x ||, and then the theorem that conversely, 1the
semi-simple case, the norm topology in A is determined By, the
function algebra 4. The third main theorem is the earlier men-
tioned theorem that 4 is closed under the applicatiop.gf’analytic
functions. Finally we prove the existence of a,nI\cl discuss the
boundary of the maximal ideal space 9. S)

24A. The formula for the computation off}¥ [|,, can be de-
veloped in a general non-commutative forfnif I # s 1s replaced
by the spectral norm of x, || % ||,p, whichnis defined for x in any
complex algebra as lub {| M |: M € spéctrum »}. The commuta-
tive formula follows from the equglity {| £l = || x|, proved
in 23B. oW

Theorem. 7n any Banach ‘éfé'eéra, | % [lep = Lim, o, o || & |2/,

Proof. We observe,ﬁrsft*\that p € spectrum y = | u| = ||yl
for, if | | > || 7], thé}Hy/p || <1 and y/u has an adverse by
22A. Thus ||yl |5 ]]. Also, we know (21E) that x ©
spectrum x = XN& spectrum 7, 5o that || x ||, < (|| & [|,)1"
Combining thése inequalities we get [} » ||, = || 27 ||V" for every
7, and so UQ;\HSP = limy o, . || 27 V"

It renfains to be proved that || ¥ ||, = lim, . [| #* ||/*. By
the défhition of spectrum and spectral norm, (Ax)’ exists for
| P\T\<‘ 1/|{ # ||ep- If Fis any functional of 4%, it follows from
22C that f(\) = F((M\x)") is an analytic function of A in this -
circle, and its Taylor’s series therefore converges there. The co-
efficients of this series can be identified by remembering that,
for small A, (Ax)' = —~ 3.7 (\x)", giving

SO = F(w)) = =320, Flo .

It follows in particular that | Fa™)a"| = [ F(A**) [ — 0 as
#n— oo if |N| < 1/{|#]|sp. This holds for any functional
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F & 4% and it follows from a basic theorem of Banach space
theory proved eatlier (8F) that there exists a bound B for the
" sequence of norms || A |[. Thus |{x*{|*"* < BY"/|\]| and
lim |[#"||“" < 1/|x]. Since N was any number satisfying
[ A <1/ # ]|,y we have lim || +»

M7 < | % ||ep as desired.

Corollary. In any commutative Banach algebra || # |l =
lim, _, ., [| x* {[*/~. N

24B. The radical of a commutative algebra is the intefsection
of its regular maximal ideals; if the radical is zero, the dlgebra
is said to be semi-simple. If A is a commutative Bé-u}géh algebra,
then x C radical (4) if and only if #(3M) = 0 fohevery M, that
is, || #]lc = lim || #* [|}/* = 0. Thus a neces§aty and sufficient
condition that 4 be semi-simple is that £ =0 = x = 0; hence
that the mapping ¥ — £ of .7 onto 4 is affalgebraic 1somorphism.
There then arises the natural questioq‘as\to whether the topology
of 4 is determined by the functionalgebra 4, or, equivalently,
by the algebraic properties of Af.fﬁ'"lt is not obvious that this is
$0, as it was for the algebra @©(8), for now || ]|, is in general
less than || x || and the inverse mapping & — x is not in general
norm continuous. The dhswer is nevertheless in the affirmative

and depends directl, '\fm’ the closed graph theorem. We prove
first a more generalgesult.

‘ Theorem. Le\( T be an algebraic homomorphism of a commuta-
tive Banackn Qiggém Ay onto a dense subset of a commutative Banach
algebra ; (D Then:

(1),’?/’} adjoint transformation T* defines a homeomorphism of
{}ze maximal ideal space My of Ay onto a closed subset of the maximal
{f‘w? space M, of Ay;

2y If Ay is semi-simple T is continuous.

Pl:oof. Since we have not assumed T to be continuous, the
adjoint T*j‘ cannot be assumed to exist in the ordinary sense.
However, if  is a homomorphism of .4, onto the complex num-
bers, then o(T(x)) is a homomorphism of 4, into the complex
numbers, and sinée « is automatically continuous (23A) and

T{(A1) is dense in A, it follows that this homomorphism is onto.

We naturally designate it T*a. Tt is clear that T#a, = T*as if
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ar # oy, 50 that T* is a one-to-one mapping of A, onto a subset
of A;. Since T(41) is dense in 43, the topology of A, is the weak
topology defined by the algebra of functions (7(x))*. But
[T)]) (@} = a(Tx) = [T*a](x) = #(T*a), and since the func-
tions £ define the topology of A, the mapping T* is a homeo-
morphism,

Now let 8y be any homomorphism of A; in the closure Q{
T*(As). That is, given € and %y, -, x,, there exists o €Ny
such that | B8e(s;) — «(Tx:) | <€, i=1, -+, m. This mmplies
first that, if T(x;) = T(xs), then Bolw;) = Bo(x2), so &hat the
functional «q defined by (%)) = Bol(x) is singlg*walued on
T{A), and second that | ao(y) | < || ¥]||. Thus afds a bounded
homomorphism of T(4,) onto the complex nuiBers and can be
uniquely extended to the whole of 4,. We bave proved that, if
Bo belongs to the closure of T*(A,), then'Zthere exists oy € A,
such that Bo(x) = ag(Tw), i.e., By = 7% Thus TH(As) 1s closed
in Ay, completing the proof of (1).  \J

If %, = x and T(x,) — 3, vt};i’:“n %, — # uniformly and
(T(#,))" — $ uniformly, and since $(T*()) = (T2)*(a) for all
7 € Ay, it follows that #(T*(@)P = $(a), i.e., that (Tx)* = $. If
Ay 1 semi-simple, then y £\T'x, and the graph of T is therefore
closed. The closed gr%@}ftheorem {(7G, Corollary) then implies
that 7T is continuouspproving (2).

Corollary. Lgb}ﬁ"“ée a commutalive complex algebra such that
the hamomorphiSmy of A into the complex numbers do not all vanish
at any e!em‘a@’;‘.\"of A. Then there is at most one norm (fo within
egm'mknge)'}viﬂz respect to which A is a Banackh algebra.

Progf) " If there are two such norms, then A is semi-simple
witfgéspect to each and the identity mapping of 4 into itself is,
therefore, by (2) of the theorem, continuous from either norm
into the other. That is, the two norms are equivalent.

24C. This is the natural point at which to ask under what
circumstances the algebra . is uniformly closed, i.c., is a Banach
space under its own norm. Tf A4 is semi-simple, the answer Is
simple.

Theorem. A necessary and sufficient condition that A be semi-
simple and A4 be uniformly closed is that there exist a positive con-
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stant K such that || x || £ K[| x*|| for every x € 4. The map.
ping x — £is then a homeomorphism between the algebras A and 4.

Proof. If 4 issemi-simple, the mapping x — ¢ isan algebraic
isomorphism and, if its range 4 is uniformly closed, then the in.
verse mapping is continuous by the closed graph theorem (7G}.
Thus there exists a constant K such that || x| = K| £,
Then || x> 2 K?|| #{.% = K¥| (+))* e £ K| %*||. Thusthe

I
condition is necessary. If, conversely, such a & exists, then
)

%l = KHl| 2% = KH+HM[| b || o

N

=...= K‘/‘i+"'+2_"” 22" ||2—n' “.(..’}‘.

: ] ¢ & .
Thus ||l = Klim || 2" ||''* = K[| £ ||, Ttsdolows that .7 is
semi-simple and that 4 is complete under the*uniform norm, so

that the condition is sufficient. 4D

Co_rolIary. A necessary and suffcignpcondition that A be iso-
melric to A4 is that || x |2 = || x2 || fox étery » € A.

Proof. The case K = 1 abowa,® ‘

24D. Qur third theorem_ states that the algebra of Fourier
transforms A4 is closed under the application of analytic functions.

. Them:em. Let the ézl{‘;s;z'é}z‘r x € A be given and let F(z) be analytic
i a region R of theComplex plane which includes the spectrum of X
(the range of thexfuaction %, plus O if 51 is not compact). Let T be
any ?‘ea‘y?aé{ij&{mp}e closed curve in R enclosing the spectrum of .
Then the eldment C A defined b
% ¥ ﬁl ed by
N F(x
R s L B

h 2t Jr (e — x)

) 1 Foy
wa = — - _ A
F(M) 2m‘fm —y )a’)\ = F(£(M))

Jor every regular masimal ideal M, Thus the Sunction algebra Ais
closed under the application of analytic functions.

; Proof. For the moment we are assuming that 4 has an iden-
1ty e. Since I rontains no point of the spectrum of «, the ele-
ment (Ae — %) exists and is a continuous function of A by

£\
z'Nu‘"f?z that
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22B. The integrand FO\)(Ae — &)~ is thus continuous, and
hence uniformly continuous, on the compact set . The classical
existence proof for the Riemann-Stieltjes integral shows, without
any modification, that the element ya = 3 F(\) (\e — %) AN,
converges in the norm of 4, and the integral v is defined as its
limit. Since the mapping ¥ — # is norm decreasing, the func-
tion $a(M) = 37 F(\)(\ie — £(M))™ AN, converges at least as,
rapidly in the uniform norm to $(34). But the limit on the right,
for each A4, is the ordinary complex-valued Riemann-Stieltjes'ias
tegral, and the theorem is proved. O

If 4 is taken as the algebra of functions with absolytely con-
vergent Fourier series, then the present theorem is duédo Wiener,
and generalizes the result of Wiener on the existéfide of recipro-
cals mentioned at the end of 23C. D

We now rewrite the above formula in a fo@,\using the adverse.
First,(de — )1 =A"He — x/0) "1 = Ao (v/N)) = a7 —
A 7Hx/N). Thus « W

*a)

[l FN ] RN 200 (x)
y‘[z??ﬁ ) d}\ﬁ?:'zwfﬁ NV AG

If 4 does not have an identisy, we cannot write the first term,
and we therefore define yhinthe general case by:

o 1 FON) (oY
CHLEOTEN
A 2riJr A \X
'n\:,
The existence.@lrohf for y is the same as in the above case, except

that the ir;v’,e:rse is replaced by the adverse. Remembering that
XM M /(3 — 1) = 1 + 1/(#(M) — 1), we see that

A% 1 PO i O
FM) = _TﬂﬁT‘ﬂ*ﬁﬁx—x‘(m‘ﬁ'

The first integral will drop out, giving the desired formula ${}4)
= F(#(M)), if either (a) F(0O) = 0, or (b) T does not enclose
% = 0. The latter cannot happen if 9 is not compact, for then
the spectrum of » automatically contains 0 (£ being zero at in-
finity). If however 97 is compact and if there exists an element
# such that £ never vanishes, then (b) can be applied. If we
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take =1 in this case we get § = I, proving that 4 has an
identity, and therefore, if £ is semi-simple, that 4 has an identity,

Corollary. If A is semi-simple and 9 is compact, and if there
exisis an element x such that % does not vanish, then A has an
identity.

Remark: The curve T may be composed of several Jordan
curves in case the spectrum of x is disconnected. We must. fhere-
fore be more precise in the specification of &: it shall befaken to
be a region whose complement is connected, and whose “Fompo-
nents are therefore simply connected. \*

24E. Our last theorem, on the notion of bo

ut’jéia;y, is due to
Stlov [17]. h

O

Theorem. Let A be an algebra of coptinions complex-valued
Junctions vanishing at infinity on a Zogszgfj} compact space S, and
suppose that A separates the points of § s hen there exists a uniquely
determined closed subset F — S, cqlled the boundary of S with re-
spect to A, characterived as beingthe smallest closed set on which all
the functions | f |, f € A4, a{;ﬁ;}ie their maxima.

Proof. The assumpEiQﬁ that 4 separates points is intended
to include the fact, that each point is separated from infinity,
L.e,, that the functions of 4 do not all vanish at any point of S.
We have earliep,proved in these circumstances that the weak
tapology induted’in § by the functions of 4 is identical to the
given toqu{g}_ (5G).

€ come now to the definition of the boundary F. Tet & be
the fgmily of closed subsets # < § such that each function | f |
S, assumes its maximum on F. Let$, be a maximal linearly
b;[(}ered subfamily of & and et Fo=N{F: Fcg,}. Then
Fo € g, for, gi.venf € 4 and not identically zero, the set where
| /| assumes its maximum is a compact set intersecting every
F € %4 and therefore intersecting F,. Fyis thus a lower bound

for &, and therefore a minimal element of .
We show that F, is unique b

eh?ment Fy is a subset of F.
€Xists a point p, € F, —
meeting Fy, N is define

¥ showing that any other minimal

Suppose otherwise. Then there
Fy and a neighborhood N of p, not
d as the set {p: | fip) — filp) | < &
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i=1,-,n} for some ¢ > 0 and some finite set f;, - - -, £, of ele-
ments of 4. We can suppose that max | Ji—¢i| £ 1, where
= /i(p1). Since F i1s minimal, there exists f, € A4 such that
] fg | does not attain its maximum on F; — N. We can suppose
that max | fo| =1 and that | /o] < eon F; — N (replacing fo
by a sufficiently high power f;*). Then | fify — cifol < e on
the whole of 7y and hence everywhere. Therefore if po € Fy is
chosen so that fo(pe) = 1, it follows that | f(pg) — | < ei=1;
-5 7, and so pg € N. Thus py € Fy N N, contradicting, the'
fact that ¥ N Fy = . Therefore ¥, ¢ Fyandso F; = Tu “that
1, F 15 the only minimal element of . ~
Remark: The reason for calling this minimal set the &ouna’ary
of § can be seen by considering the second exampla"}h~ 23C. The
function algebra 4, was the set of all analyti®" functions m
| 2] < 1 whose Taylor’s series converge ab,solufely in {z|=
and the maximal ideal space 9% is the closed “dircle | 2| = 1. The
ordinary maximum principle of functlon {theory implies that the
|b0undary of 9 with respect to A’G 38" the ordinary boundary
z | . Q

Corollary. If A isa reguZar f;ﬂém’m algebra, then F = §.

Proof. If ¥ = & and p 14 S F, then there exists by the con-
dition of regularity (19F) N function f € A4 such that /= 0 on
Fand f(p) ¢ 0. Thigehtradicts the definition of the boundary,
so that ' must be the whole of §.

Corollary. {(Pf is a self-adjoint fumtmn algebra, then F = §.
The proqﬁ;s given later, in 26B.
0\’ $

PN

\\3".



Chapter V

SOME SPECIAL BANACH ALGEBRA‘S\:\

A

W
7%
" 4 \

In this chapter we shall develop the theoryyof certain clas:::i
of Banach algebras which we meet in the study of the‘group :
gebras of locally compact Abelian groups and compact grout]iﬁ;
§ 25 treats regular commutative Baga’p}"f algebras, whlch_at‘e e
natural setting for the Wiener Tauberian theorerq and its gfi
eralizations. In §26 we study Banach algebras with an mV; E—
tion, which are the proper domain for the study of pOSlth: Ie -
niteness. Finally, in § 27 we develop the t_heory of the h; -a ie-
bras of Ambrose, whiqh(include as a special case the L% group

bras of compact gfolps.
alge p t;\{ P

§25. REGTLAR commuTaTIVE BANACH ALGEBRAS

This sectidn” is devoted to a partial discussio_n of th_e ldﬁi;vil
theory Oﬁa'hcommutative Banach algebra asso.cmted with ¢ ff
Wienet\Tauberian theorem and its generalizatlons.l The ge“h |
eralproblem which is Posed is this: given a commutative Banalcoir
{[\gébra A with the property that every (weakly) clossacl.set X
regular maximal ideals is the hull of its kernel, when is it tru
that a closed ideal in A is the kernel of its hull? The Wleuil‘
Tauberian theorem says that it is true for ideals with zero’h.ll >
provided the algebra satisfies a certain auxiliary condltloni
Questions of this king are difficult and go deep, and the genera

situation is only incompletely understood.
25A. A Banach algebra 4

is said to be regular if it is commu-
tative and itg Gelf}md repres

. P : 1-
entation 4 is a regular function a
82
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gebra. This means by definition that the weak topology for or
defined by 4 is the same as its hull.kernel topology, and (by
19F) is equivalent to the existence, for every (weakly) closed set
C c o and for every point My & C, of a function f & A4 such
that f = 0 on € and f(M,) 2 0. We show in the lemma below
that the representation algebra of a regular Banach algebra pos-
sesses “local identities,” and the discussion in the rest of the SECA,
tion holds for any regular, adverse-closed function algebra which

has this property of possessing “local identities.” RAY,
£\

Lemma. If A is a regular Banach algebra and M, I8 regular
maximal ideal of A, then there exists x € A such ot ie'=1 in
some neighborkood of M,. ."‘:,\\

Proof. We choose » € 4 such that #(M)3 0, and a com-
pact neighborhood € of M, on which # nqvi{ﬁ'vanishes. Then €
is hull-kernel closed by the hypothesis that’ .7 is regular, and we
know that the functions of .4 confined\t&”C form the representa-
tion algebra of 4/k(C). Since thig\algebra contains a function
(£) bounded away from 0, it follows from the analytic function
theorem 24D that it containssthe constant function 1. That is,
A contains a function %o which is identically 1 on C, q.e.d.

25B. From now on A<will be any adverse-closed algebra of
continuous functions vanishing at infinity on a locally compact
Hausdorff space S),S;{IC}} that § = A, and A is regular and has
the property of the“above lemma.,

P 4

Lemma. jk\C 15 a compact subset of S, then there exists f € A
such that { iiidentically 1 on C. '
NN

Proofy If £, = 1 on By and f2 =1 on B, then obviously
Ji+/f—fife=1o0n B, U B,. This step is analogous to the
well-known algebraic device for enlarging idempotents. By the
compactness of C and the previous lemma there exist a finite
number of open sets B; covering € and functions /; such that

¢ =1on B. These combine to give a function f = 1 on U B:
by repeating the above step a finite number of times.

Corollary. If A4 is a semi-simple regular Banach algebra and
the maximal ideal space of A is compact, then A has an identity.
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Proof. Since 9% is compact, the lemma implies that the con-
stant 1 belongs to the representation algebra .7; thus 4 has an
identity. The semi-simplicity of 4 means by definition that the
natural homomorphism » — £ of 4 onto .4 is an isomorphism;
therefore £ has an identity.

25C. Lemma. If F is a closed subset of S and C is a compact
set disjoint from F, then there exists f € A such that f = Oran F
and f =1 on C. In fact, any ideal whose hull is F conigins such

oA\
an f. L™

Proof. By virtue of the preceding lemma this js’;.‘a\ﬁ exact rep-
lica of the first lemma of 20F. However, in viéw of the impor-
tance of the result we shall present here a sligh;tltv different proof.
Let 4c be the function algebra consistin of the functions of 4
confined to C; 4 is (isomorphic to) the@uotient algebra 4/k(C).
Ae has an identity by the precedingdemma, and since € is hull-
kernel closed the maximal ideals of H; correspond exactly to the
points of C, Now let I be any-ddeal whose hull is ¥ and let Iy
be the ideal in 4, consistingeef ‘the functions of 7 confined to C.
The functions of I do not “all vanish at any point of C, for any
§uch point wonld belogg fo the hull of 7, which is F. Thus ¢
18 not included in a ¥maximal ideal of 4., and therefore I =
zfg In particulag 3 contains the identity of A¢; thatis, I con-
tains a functio;\*r which is identically 1 on C.

25D Thezeirem. If F is any closed subset of S, then the func-

tions of L with compact carriers disjoint from F form an ideal F(F)
w}w‘ff ’%! is Fand which is included in every other ideal whose
huiles'F.

NProof. The carrier of a function f is the closure of the set
fﬁ?}'leref¢ 0. The set of functions with compact carriers dis-
Joint from F clearly form an ideal j(F) whose hull includes F.
o < fF’. then p has a neighborhood V whose closure is compact
and dls_](?lnt from F. By the fundamental condition for regularity
there exists / € 4 such that f®) # 0 and f = 0 on N'. Thusf
has a compact carrier (<) disjoint from F and f € j(F), prov-

ing that P LA . Th om £ o
and 2(i(F) = F. &) us p ¢ F implies that p ¢ 4(j(F)
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- Now if 7 is any ideal whose hull is and f is any function of
J{F}, with compact carrier C disjoint from F, then by the pre-
ceding lemma I contains a function ¢ identically one on C, so
that /= fe € 1. Thus j(F) c I, proving the theorem.

As a corollary of this theorem we can deduce the Wiener
Tauberian theorem, but in a disguise which the reader may find
perfect. Its relation to the ordinary form of the Wiener theorem )
will be discussed in 37A.

Corollary. Let A be a regular semi-simple Banach az’geé;ta,\'zé}izk
the property that the set of elements x such that % has COMmPcE/sup-
port is dense in A. Then every proper closed ideal is inclyded in a
vegular maximal ideal. R4

Proof. Let 7 be a closed ideal and suppose thak 7 is included
in no regular maximal ideal. We must showsthat 7 = 4. But
the hull of 7 is empty and therefore / ingludes the ideal of all
elements x € 4 such that 4 has compact support. Since the
latter ideal is dense in 4 by hypothesss,” we have 7 = £ as de-
sired. o
25E. A function f is said to belong locally to an ideal 7 at a
point p if there exists g € J su€h thatg = Fin a neighborhood of
P- 1f pis the point at infidity, this means that g = £ outside of
some compact set. \

Theorem. Jf f éfzfé}’;fjj locally to an ideal I at all points of §
and ai the point apyinfinity, then f € 1.
po &/

Proof, In \wﬁéw’ of the assumption on the point at infinity, we
may as welhsiippose that § is compact and that 4 includes the
constant functions. Then there exists a finite family of open sets
U; coveging § and functions Jis € I such that f = f; on U,, We
can find open sets 7; covering § such that 7; © U;, and the
theorem then follows from the lemma below.

Lemma. Iff;cTondf=fion Uyi=1,2, and if Cis a
compact subset of Uy, then there exists g € I such that f = g on
U, uc.

Proof. Let e Abesuchthate =1o0n Cande =0 on Uy,
Ifg=f2€+f1(1_€), theng=f2=fon C,g:flgfon
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Uy~Usandg=fe+f1 —¢) =fon U, N U, These equa-
tions add to the fact that g = fon U, U C, as asserted.
In applying this theorem the following lemmaz is useful.

Lemma. An element f always belongs locally to an ideal T a
every point not in hull (I) and at cvery point in the interior of huil

(/).

Proof. If p ¢ hull () then there exists by 25C a fufietion
¢ € I such that ¢ = 1 in a neighborhood N(p). Theo ¥f € 1
and / = ¢f in N(p), so that f belongs locally to 7 at 2-NThe other
assertion of the lemma follows from the fact that £ contains 0.

25F. The above theorem leads to the strongestkriown theorem
guaranteeing that an element x belong to an ifedl 7in a commu-
tative Banach algebra 4. We say that the algebra 4 satisfies
the condition D (a modification of a condition given by Ditkin)
if, given x C M ¢ o, there exists agequence x, € .7 such that
£, = 0 in 2 neighborhood ¥, of Mrand xx, — x. If 9N is not

compact, the condition must algo be satisfied for the point at
infinity. N

Theorem. Let A be o regular semi-simple Banach algebra sal-
isfying the condition Dand let I be 4 closed ideal of Ad. Then 1
contains every fffm&‘w’ i k(A(I)) such that the intersection of the
boundary of hull X) “with hull (1) includes no non-zero perfect set.

Proof. Waprove that the set of points at which # does not
belong lo.qgt"l‘l‘y"to Iis perfect (in the one point compactification of
). Itjs’clearly closed. Suppose that M, is an isolated point
and ‘r’lia U is a neighborhood of My such that £ belongs locally
10 £oat every point of I7 except M,. There exists by the condition
1) sequence y, such that y,x — » and such thas each function
Jn 18 Zero 1n some neighborhood of M,. Let e be such that 2 =0
n U'and ¢ = 1in a smaller neighborhood 7 of M,. Then $.#
belongs locally to 7 at every point of o, and therefore is an ele-
ment of f by the preceding theorem, Since 7 is closed and
¥ — %, it follows that xe € 7 and hence that # belongs to
at My (since xe = y in V). Thus the set of points at which &
does not belong locally to 7 is perfect. Since it is included in
both hull (7} and the boundary of hull () by the lemma in 25E
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and the assumption that A(7) < A(x), it must be zero by hypoth-
esis. Thus £ belongs locally to £ at all points, and x € 7 by 25E.

We shall see in 37C that the group algebra of a locally compact
Abelian group satisfies condition D, and this gives us the strong-
est known theorem of Tauberian type in the general group
setting, '

§26. BANACH ALGEBRAS WITH INVOLUTIONS

We remind the reader that a mapping ¥ — &* defined on‘an
algebra A is an involution if it has at least the first four ef\the
following properties: \ .

(1) KFF = p

T}
N

@ Gt =ty O
(3) % =%t o

(4) () * = ysr N0
ONE. [l | = 1] e

(6) —axw* has an adverse (¢ -+ x%¥ has an inverse) for every a.

Many important Banach al@ebras have involutions. For in-
stance all the examples of §08" possess natural involutions except
for 2a and 4. 1In the algebras of functions 1 and 5 the involu-
tion is defined by f* ;'fh'and the properties (1) to (6) above can
all be immediately goftfied. 1In the algebra 2b of bounded opera-
tors on a Hilbertgpace, #* is the adjoint of 4, and we have al-
ready seen in QB'that properties (1) to (6) hold. Group algebras
will be discussed in great detail later.

The exiSténce of an involution is indispensable for much of the
standdscdDtheory of harmonic analysis, including the whole theory
*of positive definiteness. We begin this section by investigating
the elementary implications of the presence of an involution, and
then prove a representation theorem for self-adjoint Banach al-
gebras, the spectral theorem for a bounded self-adjoint operator,
the Bochner theorem on positive definite functionals, and a gen-
eral Plancherel theorem. _

26A. Our systematic discussion in the early letters of this sec-
tion gets perhaps a trifle technical and we shall try to ease mat-
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ters somewhat by proving ahead of time and out of context one
of the simplest and most important theorems. The reader will
then be able to omit 26B to 26E if he wishes and go on immedi-
ately to the numbers having more classical content.

Theorem. If A is a commutative Banach algebra with an iden-
tity and with an involution satisfying (1)-(5), then ifs transform
algebra d is the algebra e(9N) of all continuous complex-valued
Junctions on its maximal ideal space S and the mapping % O w*
is an isometry of A onto C(IM). O\

Proof. We first prove that, if » is self-adjoint (.:;E\ x*), then
4 1s real-valued, Otherwise # assumes a compléx value 2 +- 5
(6 #0), and, if y = x 4+ iBe, then y assumeb ‘the value ¢ + 4
(6 + B). Remembering that y* = x — i Be\we see that

@ +8HUBE B (|91 5 | 3D |] = | 5° + B
s | #2]] + BRSY

which is a contradiction if B;jiéﬁ'“chosen so that 248 > ||« [|%
This argument is due to Args 2],

For any x the elements - x* and i(x — x*) are self-adjoint
and 2% = (¥ + &%) — #f& — &*)]. Since the functions £ sepa-
rate points in 9n thedeal-valued functions of A4 form a real alge-
bra separating the points of o and hence, by the Stone-Weier-
strass theorem,(defise in @F(91). Therefore 7 is dense in ©(9N).
The above gipression for x in terms of self-adjoint elements also
proves that(x*)* = (),

Fing.,l' we prove that 4 is isometric to A, hence complete in
thf:.tlfmform norm, hence identical with e(sm). If y is self-adjoint,
Wq:gl}'avgﬂexactly as in 24C the inequality || y || = || y2 || % <+~ S

7|77, and therefore 5] =[5l In general {|«il=,
o 2 < | o9 13 < 1 | o 1)4'Z )1 s msserted.

. commutative Banach algebra is said to be self-adjoint
if for every » € A there exists ¥ € A such that § = &~ (7 being

the c_omplex'(:?n.]ugate of ). Wenote several simple consequences
of this definition.

N

Lenirfla L If 4 is a self-adjoint commutative Banach algehrds
then A is dense in e(omn).
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Proof. If » and y are related as above, then (£ + $)/2 is the
real part of £ and (# — $)/2 is the imaginary part. It follows
that the real-valued functions of . form a real algebra which
separates points of 91 and therefore, by the Stone Weierstrass
theorem, is dense in CB(3n). Therefore 4 itself is dense in e(am),

Corollary. If A is self-adjoint, then 9 is its own éaundarj.

Proof. Otherwise let M, be a point of 3 not in the boundary}
let / be a continuous function equal to 1 at M, and equal f £ 07on
the boundary, and let # be any function of .7 such that =2,
<4 Then | #(Mg)| > % and [£] < % on the boundaty, con-
tradicting the fact that £ must assume its maximum €ithe bound-
ary. Thus no such A4, can exist and 91 equals its. boundary.

Lemma 2. If A is self-adjoins and C z'x{z?éompzzct subset of
O, then there exists x € A such that # = Q':z;\ﬂd £>0on C.

Proof. For each M € C there exists « € 4 such that #(M)
# 0. Then | #]? € 4 by the definition of self-adjointness and
[#]2> 0 on an open set contgming p. It follows from the
Heine-Borel theorem that a finite sum of such fuhctions is posi-

tive on C, q.e.d. This is ¢he same argument that was used in
19C. A\

Corollary. [f A i Semi-simple and self-adjoint and W is com-
pact; then A has gpdtentity,

Proof, T Eée\’exists % € A such that # > 0 on 9t and it fol-
lows from ghe ‘corollary of 24D that £ has an identity.

26C, IfyA is self-adjoint and semi simple, then, given x, there
existf\a nique y such that § = #—. If this y be denoted x* then
the mapping » — #* is clearly an involution on 4 satisfying
(1)=(4). It also satisfies (6), for —| £ |? never assumes the value
1, and —xw* is therefore never an identity for a regular maximal
ideal, so that —sw* has an adverse by 21D. The converse is
also true, without the hypothesis of semi-simplicity.

Theorem. If A is a commutative Banach algebra with an in-
volution satisfying (1)-(4) and (6), then A is self-adjoint and
& = 3~ for every x € A.
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Proof. An element x such that x = «* is called selfadjoins.

In proving that x** = 27, it is sufficient to prove that, if x is
self-adjoint, then # is real-valued, for in any case x + x* and
i(x — x*) are self-adjoint elements, and, if they are known to
have real transforms, then the conclusion about x follows from
its expression as [(x + x*) — i(i{x — x*))]/2, together with (3).

Accordingly, let x be self-adjoint and suppose that # is_not
real, (M) = a + bi for some M, with 4 = 0. Then some Hoear
combination of £(Af) and (x)*(M) has pure imaginary, Part, for
the number pairs (4, 8) and (a® — 42, 24b) are linearlythdépend-
ent. The actual combination is y = [(4% — a2)x + ax¥/4(a% + 57,
giving $(M) = i. Then (—y)*(M) = 1 and —H2= —vy* can-
not have an adverse. This contradicts (6),.afig" proves that £ is
real-valued if x is self-adjoint, q.e.d. O
77\

26D. Theorem. If 4 commutativg, ~§B’cznac!x algebra is semi-
simple, then it follows from properties W) —(4) alone that an involu-
fHon i3 continuous.

Proof. 24B can be applied® almost " directly. Actually, the
proof of 24B must be modified slightly to allow a mapping T of
Al- onto a dense subalgebra of 4, which departs slightly from
ben}g a homomorphis\ﬁl“(to the extent that involution fails to be
an 1somorphism). *The details will be obvious to the reader.

26E. We now/faise the question, suggested by 26B, as to when
a self-adjointialgebra has the property that 4 = e(an). Some
of the ment is the same as in 24C, but will nevertheless be
repeaye§1> If 4 = e(om) and A is semi-simple, the continuous
one-tesone linear mapping x — £ of 4 onto 4 = e(on) must
Havye'a continuous inverse by the closed graph theorem. Thus
there- XSS a constant K such that || x || < K || 4|, for every %,
and, in particular, [ = K| #]),2 = Kl 22— || < K¥| ax* [
Conver.sely, this condition is sufficient to prove that 4 = e(31)
even without the assumption of self-adjointness.

. The01"em'. If a commutative Banach algebra A4 has an involi-
ton satisfying (\)~(4) and the inequality || x ||2 < K|| xx* ||, ther

HxHéKHJ?I«,for i A A o Gioint,
and 4 = @(m)[. ail x & A, 4 is semi-simple and self-adjo
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Proof. If y is self-adjoint, then the assumed inequality be-
comes |22 = K||»?||. Applying this mductlvely to the powers
y ", we get 7l = K952 Pf = K4 5 1% s _<_ KARH

- K27 y7 |[*7. Therefore ||y || £ K lim HJ’”‘ H”’" = K| 9 |l
The equation x**(M*) = x(M) implies that [[ x#** ||, =
Tl £ K 4 1% and || ]|
K| # ||y as asserted in the theorem. One consequence of this in.
equality is obvlously the serm-mmphmty of 4. Another is that
the one-to-one mapping ¥ — # is bicontinuous and that the, al-
gebra 7 is therefore uniformly closed. It will follow erm 26B
that 4 = e(m) if 4 is self-adjoint. N

The equation #**(M*) = #(M) shows that, if Hj 1s a minimal
closed set on which every function | £| assunges. :ts maximum,
then so is F*, But the only such minimal closqd \Set is the bound—
ary Fy, so that Fy = Fy*. We now show tk{a:t M=M*IfMisa
point of the boundary F;. Otherwise we. €an find a nelghborhood
U of M such that U N U* = &, and a function £ € 4 which
takes its maximum absolute value S/ and nowhere else on the
boundary ;. We can suppose £hat max [ 4] =
< ¢ on Fy — U (replacing & by (#)* for n sufficiently Iarge)
Then | (¥®)*] < ¢ on Fy, A\U* and | #x**| < ¢ on the whale
boundary F, and h e everywhere. Then 1 £ ||« |2
K2|[ tx** ||, < KZ%, acontradiction if ¢ < 1/K?2, Thus (x*)* =
£7 on the boundar)z “Since A is uniformly closed, we see from
26B that the restiction of 4 to the boundary Fj is the algebra
e{Fy) of all hnuous complex-valued functions Vanlshmg at in-
finity on Fg'\ We know (19C and 20C) that FO is the set of all
regular mammal ideals of this algebra, and since the restriction
of A8 by the definition of the boundary, isomorphic (and iso-
metric) to A itself, it follows that Fy is the set of all regular maxi-
mal ideals of 4, i.e., Fy = 9. Thus ¥** = x"~ everywhere and
4 18 self-adjoint.

Corollary. If A is a commutative Banach algebra with an in-
volution m:z.yfymg (1)—(5), then A is isometvic and isomorphic to
e(m) =

Proof. Now X = 1 and the mequallty [|2]| = X|| £#]], im-
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Corollary. If A is a commutative algebra of bounded operators
on a Hilberi space H, closed under the norm topology and under the
adjoint operation, then A is isometric and isomorphic to the algebra
e(In) of all continuous complex-valued functions vanishing at in-
Jinity on a certain locally compact Hausdorff space on,

Proof. The above corollary and 11B.

It should perhaps be pointed out that the theorem cambe
proved without using the notion of boundary by adding an iden-
tity and applying 26A. We start, as in the first paragraphiof the
given proof, by showing that the norm on  is equivdlent to the
spectral norm. The following lemma is then the eriicial step.

7

WY
Lemma. If A4 is a commutative Banack algebra with an in-

volution satisfying || x ||2 = Klf sx* 1], !/zm,H\,r [sp® = [[ xx* [}
Proct, | (sx)* 10 = || ssn S | g ([ oo [

Taking limits we get || ax* o = W (Lol %% {lep = {] = ||s™

Conversely, || +» ||2 = K| 2 = K[| ety ||, || &7 [P S

K| (o)™ || and, letting 9= oo, [} x |[,,2 = || w5* {]ope
.Supposing, then, that the“eriginal algebra has been renormed
with its spectral norm, wesiow add an identity and observe that
the norm || x + \e [t\éﬂ || + | n| satisfies the K inequality
with K =16, For'if ||x]| < 3[N], then ||x + hel? =
Ul fl 10D <8N [2 < 16| (1 -+ he) (e + ) ], while, if || # |
= 3| a, then\u:xx* TAF - da || 2 ]| k]| — [ he* A || 2
Il /3 audebviously (i x| + | x )? = 16 x |[2/3 + | )
The lewwna therefore implies that || y l|ep2 = || 39*||sp in the
;}é;?{ded algebra and the theorem is now a direct corollary o
26F. A representation T of an algebra A is a homomorphism
(x — T.) of 4 onto an algebra of linear transformations over a
vector space X, If § has an.involution, then X is generally taken
to be a Hilbert space H and T is required to take adjoints into

adjoints: T.z* = (T2)*. Itis then called a x-representation (star
representation),

N Lemma. If 4is 4 Banach algebra with a continuous involution
R CUErY w-representation is necessarily continuous.
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Proof. Since T'is a homomorphism, T, has an adverse when.
ever y does and therefore || T, ||.p < || w |, for every x. Now
Tav 13 a self-adjoint operator, and for it we know (see 26A) that
NTAE = [ TXT) | = | Tare | = || Tews [l Thas || 7, |
[ T Ny 5 1% 1y S [l 1 5 ([ ([ T 11 5 B 1
where B is a bound for the involution transformation. That is,
T is bounded with bound B*. .

If the involution is an isometry (|| x*|| = || x [}), then B =N
and || 7'|[ £ 1 in the above argument. The theorem of Gelfand
and Neumark quoted earlier (§ 11) says simply that evedy C*
algebra has an isometric s-representation. N

In this paragraph we are principally concerned with/sx-represen-
tations of commutative, self-adjoint algebras. \d¢ follows from
the above argument that in this case || 7% || S {[}# [l = || #]|.
so that any such representation can be . afisferred to a norm-
decreasing representation of the functiohalgebra 4, and, since
A is dense in e(om), the representation ¢4n then be extended to a
norm-decreasing representation of, €@n). We now show that T
has a unique extension to the l?oju'"nded Baire functions on o1,

Theorem. Let T be a boupded representation of the algebra o(om)
of all continuous compigx,v}:zked (or real-valued) functions vanish-
ing at infinity on a Zoc{;ky\compad Hausdorff space M &y operators
on a reflexive Banachspace X. Then T can be extended 16 a repre-
sentation of the algelra ®(9) of all bounded Baire Junctions which
vanish at iﬂﬁm’{y\d}f M, and the extension is unique, subject fo the
condition thal\Fo ,(f) = (Tyx, y) is a complex-valued bounded in-
tegral for etgry x € X, y € X*, If S is a bounded operator on X
which chmmutes with Ty for every f & @(W), then § commuies with
T; for Jevery f c o)., If X is @ Hilbert space H and T is a
*-representation, then the extended representation is @ w-representa-
tion.

The function F(f, &, y) = (T, y) defined for £  e(on),
¥ C X,y C X*is trilinear and | F(A, 0, ) | = || T I} £l
i1y I. If x and y are fixed it is a bounded integral on e(o1)
and hence uniquely extensible to ®(m) with the same inequality
holding. The extended functional 1s, moreover, linear in f, x
and y. If x and £ are fixed, it belongs to X** = X; that is, there
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exists an element of X which we designate 7yx such that F(£, x, y)
= (Tyx, y) for all y. From the linearity of F in its three argu-
ments and the inequality | F(f, x,3) | = || 71| || £1].]| x IRER:
we see that 7y is linear and bounded by || T[] || £ ||« and that
the mapping f — T is linear and bounded by || 7||. Now for
5 £ € e(on) we have

(a) ng = T!Ts = Tfo \
(NN
ar "\

b Flg ) = B, Teryy) = FU, 5, (T4,

Keeping g fixed this identity between three integtals in f persists
when the domain is extended from e(an) to®(9n), proving (a)
for g € e(m) and f € ®(M). Since (a) isle¥mmetric in f and g,
we have (b) for g € @(om) and f € e(s).” Extending once more
we have (b) and hence (a) for allﬁtg:E ®(on). Thus the ex-
tended mapping f — T, is a representation of ().

If § commutes with Ty for eery f € e(am), we have (T;S¥, 7)
= T3, 5) = (T, %), b&3 Ff, Sx,5) = F(/, x, §%). This
identity persists through #he extension, as above, and then trans-
lates back into the fact:?ﬁat § commutes with T, for every f €
&(9m). B

Finally, if X is,a’Hilbert space H the assumption that 7 is a
-tepresentatighy is equivalent to the identity F(f, 3, #) =
s~ N . . .

F(f, x, y%whlch again persists through the extension and trans-
lates bagkMfito the fact that the extended T is a s-representation.
This comipletes the proof of the theorem.

~20G. The essential content of the spectral theorem is that a
Baginded self-adjoint operator on a Hilbert space can be approxi-
nflated in the operator norm by linear combinations of projec-
tions.  This is similar to the fact that a bounded continuous
function on a topological space can be approximated in the uni-
form norm by step functions (ie., by linear combinations of
characteristic functions). The Gelfand theory reveals these ap-
parently unconnected statements to be, in fact, equivalent asser-

tions, and this fact gives rise to an elegant and easy proof of the
spectral theorem,
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Let @ be a commutative algebra of bounded operators on a
Hilbert space H, closed under the operation of taking the ad-
joint, and topologically closed under the operator norm. We
may as well suppose that @ contains the identity, for in any case
it can be added. Then @ is isometric and isomorphic to the al-
gebra e(om) of all continuous functions on its compact maximal
ideal space (26A and 11B) and the inverse mapping can be
uniquely extended (26F) to the algebra &(am) of all bounded
Baire functions on 9. Let A4 be a fixed self-adjoint operator
from @ and 4 its image function on 3. (This conflicts, momen-
tarily, with our earlier use of the symbol 7.} We suppase that
—1 £ 4 = 1, and, given ¢, we choose a subdivision 21 = A, <
Ap <---< N, =1 such that max (\; — M_1) &% Let £, be
the characteristic function of the compact set where 4 = ), and
choose A/ from the interval [h;_y, A4 Thg( o

” j - Z? li’(ﬁki - E?ff—zl,),'HW < €
and hence ™

|| A — Z? Air(%{‘,%kﬁl{—l) H <e

where Z, is the bounded self-adjoint operator determined by the
Baire function %, E\is iden’ii)otent {since (E;\P = F,) and hence
a projection. The appn ﬁfm’ation above could be written in the
form of a Riemann Stielgjés integral,

A

o 4 =fx B,
G
which is thefi}itegral form of the spectral theorem.

All theVstandard facts connected with the spectral theorem
follow from the above approach. For instance, simple real-
Varizr]}e approximation arguments {one of which can be based on
the Stone-Weierstrass theorem) show that, for fixed A, there ex-
ists a sequence of polynomials P, such that P,(4) | B Re-

membering that (P,(fx, &) = f P.(4) dp.,» it follows that

P.(A) converges monotonically to E in the usual weak sense:
(Puld), x) | (Ex, %) for every x € H.

26H. We conclude §26 with a study of positive-definiteness
culminating in a general Plancherel theorem. Most of the ele-
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mentary facts appeared in the early Russian literature, but the
Plancherel theorem itself is a modification of that given by Gode-
ment [20].

If A4 is a complex algebra with an involution, a linear functional
¢ over A is sald to be positive if p(xx*) = O for all x, The signifi-
cance of positivity is that the form [x, ¥] = ¢(xy*) then has all
the properties of a scalar product, except that [x, x] may be zero
without x being zero. The linearity of [x, ¥] in x and its Cenju-
gate linearity in y are obvious, and the only remainingProperty
to be checked is that [x, ¥] = [y, x]. This follows upoh expanding
the left member of the inequality o((x + AV ) H) 2 0,
showing that Me(yx*) + Ap(xy*) is real-valuedCfor every com-
plex number A, from which it follows by anseleinentary argument
that o(y5%) = o(xy*) as required. AV

It then follows (see 10B) that the Sehwarz inequality is valid:

| oley® | = so(afgf*i%‘p(yy*) g

If £ has an identity, we can t.a.k,:é.j? = ¢ in the Schwarz inequality
and in the equation e(%y*)*= ¢(yx*) and get the conditions

106 [15 Roliex®), o) = 900

where k = cp(a).-"I'n any case, a positive functional satiSfY%ﬂg
these extra couditions will be called extendable, for reasons which
the follomng\iemma will make clear,

£\

Le Y. A necessary and sufficient condition that ¢ can be

exre@’@gf 50 a3 lo remain positive when an identity is added to A is
tﬁq{p be extendable in the above sense,

\Proof. The necessity is obvious from the remarks already
made, Sy

C pposing then that ¢ satisfies the above conditions and
taking ¢(e) = £, we have ol + Xe)(x + Ae)*) = olvs®) T
208e) N PR 2 plax%) — 2| % ety % 4 | X[ =
(o(xw*)% — [N |£4%)2 » 0, proving the sufficiency.

Lemma 2. bc A is
confinuous involution
tinuous. ’

4 Banach algebra with an identity and @
then every positive Sunctional on A4 is con-
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Proof. If A4 is a Banach algebra with an identity and if
| #]] <1, then ¢ — x has a square root which can be computed

by the ordinary series expansion for V1 — ¢ about the origin,
If 4 has a continuous involution and # is self-adjoint, then so is
the series value for y = Ve — x. Thus o(e — x) = o(3y*) 2 0
and ¢(x) = ¢(e). Similarly o(—x) = ¢(¢), and we have the con-
clusion that, if x is self-adjoint and || x || < 1, then | o(x) | £ ole)
For a general » we have the usual expression » = (x + »¥%) /2,
ili(x — #*)/2] where ¥ + x* and i(x — x*) are self-adjoint. JfB
is a bound for the continuous involution, it follows that }\ (x) |
< V20(c) whenever | x|l < 2/(B + 1), proving tha.t“qa 18 con-
tinuous with (B + 1)e(e)/V2 as a bound. : \‘

261. Theorem. (Herglotz-Bochner—Weﬂ—RQkov) If 445 a
semi-simple, self-adjointy commutative Banacli dlgebra, then a linear
Sunctional ¢ on A is positive and extendabienf and only if there ex-

18515 a finite positive Baire measure ‘u,p an it .mf}z that o(x) fx dp,
Jor every x € A. \\
Proof. 1If ¢(x) zfa? dp where u is a finite positive Baire meas
+$ )

ure on 9%, then X\

o(xx™®) =f| éﬁfﬁl&% 0,

go(x*) =~' x’:dp = (fx‘ aﬂu) = p(x),

Icp(}g = [2dul? = (f];a[zdp)(fldu)=Hqua(xX*);

that is, ¢ is positive and extendable. Conversely, if ¢ is positive
and extendable, then ¢ is continuous (by Lemma 2 above) and

| 0(4) |2 £ ko(un®) = k2 H50((xx®) %)
<. .05 ,%1+"'+2_”go((xx*)2")3_"

g k1+"'+2_"“ P “2‘“"“ (xx$)2“]l2_"_
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Letting # — o and taking the square root we have | o(x) | <
k|| & ||« Since 4 is dense in @(sn), the bounded linear functional
T defined on 4 by I(#) = ¢(x) can be extended in a unique way
to e(mm). If f € e(am) and f = 0, then /¢ can be uniformly ap-
proximated by functions # € 4 and hence f can be uniformly
approximated by functions | #(% Since (| £ %) = o(ex®) 2 0
and (| £]%) approximates I,(f), it follows that L(f) = 0.
That 1s, 7, is a bounded integral. If g, is the related measufeywe

have the desired identity o(x) =ff du, for all x € /f.o\:}
N\

26]. The setting for the Plancherel theorem will 'be a semi-
simple, self-adjoint commutative Banach algf;l)ra" A, and a
fixed positive functional ¢ defined on a denseddeal 4, ¢ 4. An
element » € A4, will be said to be positive defnite if the functional
0, defined on 4 by 6,(x) = e(px) is positive and extendable.
Then by the Bochner theorem there ig"aunique bounded integral
I, on e(om) (finite positive Baire measure u, on 9m) such that

o0x) = t8) = [ du,,

T_he set of positive (%?ﬁnite elements is clearly closed under
addition and wnder r{ultiplication by positive scalars, and we
now observe thag ft contains every element of the form xx%
¥ € Ao. In fact,'we can see directly that 8,.« is not only positive
but can alsq:t)é extended so as to remain positive, for if fror
(7 + 2) Dplaxy + Aaw®), then 8,,0((y + re)(y + Ae)¥) =
(b L0y + 2% 2 0.

If?}@nd g are positive definite, then I(#p) = o(pgx) = L(#))
fory overy x € A and therefore L (hp) = I,(3§) for every 2 €
‘(). Let §; be the support of /, i.e., the closure of the set where
=0, If p5 is bounded away from 0 on §, then & = f/${ €
e(om) and 7,(f/4) = Ip(f/$). We now define the functional / on
L(am) (the set of functions in e{s) having compact support) by
fr(f) = 1,(//8) where pis any positive definite element such that ?
1 bounded away from 0 o S; and hence such that f/$ € L.. Such
a p always exists, for Sy is compact if f € L and by the Heine-
Borel theorem we can find p of the form sy * +- -+ xnxﬂ.*
such that 4 = 0 ang 5>0o0nS,. Wesaw above that I(f) I8
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independent of the particular p taken, and using the p just con-
structed we see that J{(f)} = 0 if / =2 0. Thus 7 is an integral,
The original identity I,(#{) = I,(4$) shows that the integral T,
vanishes on the closed set where # = 0, and this, together with
the identity /(f) = 1,(f/$) for all £ which vanish on this closed
set, implies that I{(gp) = I(g) for all g. Therefore I(p) =
Lo =I5l |
Finally, o(pg™ = I,(§) = I{$§) for all positive definite eled
ments p and ¢, and p — p is therefore a unitary mapping of(thé
subspace of A, generated by positive definite clements Ghto a
subspace of L2(I). We have proved the following theo\refp.’

Theorem. Let A be a semi-simple, self-adjointl tommutative
Banach algebra and let ¢ be a positive functional defived on a dense
ideal Ay < A, Then there is a unique Baire meadure poon I suck

that p & L(u) and o(px) = f &P du whegeterp is positive definite

with respect to . The mapping p H,é.w&en confined to the sub-
space of H, generated by positive dgfinite elements is therefore a
unitary mapping of this subspacesopto a subspace of L*(n), and is
extendable to the whole of H, ifsit 15 known that 4% is H-dense in
A, o\

26K. The last two the}}?ems have assumed, needlessly, that A4
is.a Banach algebrasy™ more general investigation would start
with any complex@lgebra 4 having an involution and a positive
functional ¢ on\> The Schwarz inequality for ¢ implies that
p(raa*x™) j—;'z)\"whenever e(xx*) = 0 so that the set of x such
that o(xx® = 0 is a right ideal 7, and right multiplication by &
becomeg 2 linear operator U, on the quotient space 4/1. The
condition that U, be bounded with respect to the ¢ scalar prod-
uct is clearly that there exist a constant k, such that ¢(xaa*x¥)
= kap(x*®) for every x € A, and in this case U, can be uniquely
extended to a bounded operator on the Hilbert space &, which
is the completion of A4/I with respect to the ¢ norm. If U, is
bounded for every 4, then ¢ is said to be unitary; the mapping
a —> U, 15 then easily seen to be a s-representation of 4 (see
[20]). This is the only new concept needed in the commutative
theory to formulate more abstract Bochner and Plancherel theo-
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rems. The passage to the space A of complex-valued homo-
morphisms of 4 is now accomplished by noting that since the
mapping 4 — U, is a s-representation of A, the maximal idea]
space 91, of the algebra of vperators U, is thus identifiable with
a closed subset of A. The Bochner and Plancherel theorems are
now confined to this subset am,, which consists only of self-ad-
joint ideals and therefore renders unnecessary the assumption,
made above, that x** = x*~ on the whole of A. Fven wheh 4
is 2 Banach algehra this last point is of some interest; dtyis easy
to prove by characteristic juggling starting with the ‘Sch‘warz -
equality that a continuous functional is automagigally unitary,

and the hypothesis that «** = x*~ can therefare’ be dropped
from both of our theorems. N

\\’
§27. H*-ALGEL}QAS
The preceding sections of this chapter will find their applica-
tions mainly in the theory of lacally compact Abelian groups.
In this section we gtve the very special analysis which is possible
in the H* algebras of Ambrosé [1], and which includes the theory
of the L2 group algebra ¢fa compact group as a special case. 4n
H*-algebra is o Bg 4ok’ algebra H which is also a Hilbert space
under the same nomz,gz

I, and which has an involution satisfying (1)-(4)
of §26 and ﬂz.‘{ Critial connecting property

> (xy, 2) = (3, x%2).

It is a{.f’d\mmmea’ that || x* || = || x || and that x*x % 0 if x # 0.
It follows that involution i conjugate unitary ((x*, y*) = (3, %))
and-hence that (29, 2) = (x, 2y¥%).

The structure which can be determined for such an algebra is
as fo]lo.ws. H can be expressed in a unique way as the direct
sum of its (mutually orthogonal) minimal closed two-sided ideals-
A fmnimal closed two-sided idea] can be expressed (but not
uniquely) as a direct sum of orthogonal minimal lefe (or right)
 tdeals, each of which contains a generating idempotent. It fol-

lows ‘that a minimal cloged two-sided idea] is 1somorphic to a full
matrix algebra (Poasibly infinite dimensional) over the complex
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number field, and operates as such an algebra under left multi-
plication on any of its minimal left ideals.

27A. We begin with some lemmas about idempotents and left’
ideals.

Lemma 1. Let x be a self-adjoint element of H whose norm as a
left multiplication operator is 1. Then the sequence x*" converges
fo a non-zero self-adjoint idempotent. :

QY
Proof. Let |||y ||| be the operator norm of y: H[_y\Hl=
lab, [| yz [|/1] 2 ]| Since || yz{] = [[ 5[] |, we have [} |} <
|| ¥ [ By hypothesis « is a self-adjoint element such that || « [||
= 1. Then {[|+"[[[ = 1 (see 11B) and hence || » H‘> 1 for all
n. If m > »n and both are even, then N \
(xmy 2y S [flam ]| (e, 2 = W )
57, % ] 3677, L (o

where 2p = m — n. Thus 1 £ (x™, ’“’) = (&7 x™) £ (™ ") £

<+ = (%2, %% and (x™, &%) has a Iuiazit !z lasm,n — o« through
even integers Hence lim || 5™ %" ]|J = lim (¥™ — &%, 2™ — &™)
= 0, as is seen on expanding, “and #" convetges to a self-adjomt
element e with || ¢ H = 1,Since #°" converges both to ¢ and to
e?, it follows that ¢ is Ktsmpotent

Corollary. An_y qur ideal I contains a non-zero .re{f-aa_';am:
idempotent. AS

Proof, :0\"#._): ¢ I, then y*y is a non-zero self-adjoint ele-
ment of Aand the x of the lemma can be taken as a suitable
scalar mitlple of y*y. Then e = lim »™ = lim #*"%* = ex® € I,
q. e‘i

27B. It is clear, conversely, that the set He of left multiples
of an idempotent is a closed left ideal. An idempotent ¢ is said
to be reducible if it can be expressed as a sum ¢ = ¢; 4 ¢; of non-
zero idempotents which annihilate each other; e,; = €56, = 0.
If ¢ is self-adjoint, we shall require ¢; and ¢; also to be self-adjoint,
and then the annihilation condition is equivalent to orthogonality:
O = (61, e2) = (6,3, £2%) = (e100, €165) & ¢165 = 0. Since then
Alellr = [l 1 [|2 + || e2 {|? and since the norm of any non-zero
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idempotent is at least one, we see that a self-adjoint idempotent
can be reduced only a finite number of times, and hence can
always be expressed as a finite sum of irreducible self-adjoint
1dempotents,

Lemma. [ is a minimal left ideal if and only if it is of the form
I = He, where ¢ is an irreducible self-adjoint idem polent,

Proof. Ife €. Tand e = ¢, + ¢, is a reduction of e, then He,
and He, are orthogonal left sub-ideals of 7 and 7 is not minimal.
Thus if 7 is minimal, then every self.adjoint idempogehtin 7 is
irreducible. Since He is a sub-ideal, it also follows that 7 = He.

Now suppose that 7 = He where ¢ is irreducible. If 1) is 2
proper sub-ideal of 7 and % is a self-adjointilempotent in 7y,
then ¢, = ¢k = ehe is a self-adjoint idempagent in 7; which com-
mutes with ¢, and ¢ = ¢, + ¢, (¢, = ¢ 7net) is a reduction of ¢,
a contradiction. {(Notice that e, =0 Since hey = heh = A% =
A # 0, and ¢, # ¢ since He, < I, 2.) Therefore, J is mini-
mal. W\

We remark that every mlnmaal left ideal is closed (since it is

of the form Hp), \
Corollaty. H is spanifed by its minimal (closed) left ideals.

e

' Proof. Let As be the subspace spanned by the minimal left
1deal.s of #. IfM > H, then M is a proper closed left ideal,
M is a non-zetd closed left ideal, M* contains a non-zero irre-
ducible selfatjoint idempotent, and so M* includes a minimal
left idegnl{}?‘éontradiction_

i Re?’?.’g%f fx CHandeis a self-adjoint idempotent, then x¢
oo LS Projection of  on He, for (x — xe, he) = ((x — x2)e, H) =

\(03771) = 0so that (x — x¢) | X

27(_3. Theorem. Every minimal left ideal generates a minimal
fwo-sided ideal.

The minimal rwo-sided ideals are mutually or-
thogonal, and H is the direct sum of their closures.

PfOth-‘ Let T = He be a minimal left ideal with generating
self-adjoint idempotent ¢ and let N be the two-sided ideal gen-
erated by . That is, N is the subspace generated by JH = HeH.
We first observe that N* =N, for (HeH)* = HeH. Now sup-
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pose that Ny 1s an ideal included in N. Since N;J c N, N7
and 7 is minimal, we have either that / © Ny, in which case N,
= N, or else NiJ =0, In the latter case Ny(JH) = N\N =0
and NiN* < NiN = 0, so that N; = 0. Thus ¥ has no proper
subideals and is a minimal ideal.

It follows that N2 =N, for N2> c N and N? = NN* = (.
Now let N; and N, be distinct minimal ideals, Then N N, =
NoNy = 0, for NyN, € N; 1 Ny and hence either V; = Ny O\
Ny = Nyor Ni Ny = 0. It follows that,if x, ¥y € N, and 2 €.V,
then (xy, 2) = (y, ¥*2) = 0, so that N|, = N,? | N,. Thl.ié\'(ﬁs-
tinct minimal ideals are orthogonal. \

Since the minimal left ideals span H and every mmﬁmal left
ideal is included in a minimal two-sided ideal, it &Hows that &
is the direct sum of the closures of its minimalstwo-sided ideals,
i.e., the direct sum of its minimal closed two{sn:icd ideals.

Corollary. Fuvery closed two-sided :deai\f is the dirvect sum of
the minimal closed rwo-sided ideals wkm‘; wre included in I.

Proof. FEvery minimal two-sided ideal is either included in 7
or orthogonal to 7, and the cqrjellary follows from the fact that
the minimal ideals generate &, and so generate I.

Remark: Since the orghegonal complement of an ideal is a
closed ideal, and the_ofthogonal complement of a minimal ideal
1s a maximal ideal, itfollows from the Corollary that every closed
two-sided ideal is fh€intersection of the maximal idealsincluding 1t.

27D, We comfie now to the analysis of a single minimal closed
two-sided idéél 'N.

Lemma N. If I = He is a minimal (closed) left ideal with gen-
6’?‘6353?1“@1 idempotent e, then eHe is isomorphic to the complex num-
ber pold.

Proof. This is a classical proof from the Wedderburn struc-
ture theory. If Q0 % x & He, then 0 = Hx < He, and therefore
Hx = He since He is minimal. Hence there exists 4 € H such
that 2x = . If x € cHe, so that ¥ = exe, then (ebe) (exe) = ebx
= ¢. Thus ¢He is an algebra with an identity in which every
non-zero element has a left inverse. Therefore, every such ele-
ment has an inverse, as in elementary group theory.
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Thus ¢He is a normed division algebra and hence s isomorphic
to the complex number field by 22F. ‘I'his means, of course,
that every element of eHe is of the fornt he.

Lemma 2. The following conditions are eqiiivalent.

(2) {e} is a maximal collection of mutially orthogonal irreducible
self-adjaint idempotents in N;

(b) {He.} is a collection of mutually orthogonal minimal left
ideals spanning N \

(©) {eH} is a collection of mutnally orthogonal minigngl right
ideals spanning N. N

N\

Proof. The equivalence of (a) and (b) follows from the fact
that He, | Heg if and only if &, 1 3 and 27B. Similarly for
(a) and (c). The existence of such a maxithalcollection is guar-
anteed by Zorn’s lemma. A\

27E. Given {e,} and NV as above,,\'ﬁ/‘e\ choose a fixed ¢, and
consider any other e,, Since He,F\penerates N, e He Hey # 0
and hence e, He, = 0, If ¢y, is ong of its non-zero elements, then
L1af1a™ 18 in ¢, Hey and €1e CAN b(i'z{(:“ljuSted by a scalar multiple so
that ereeo® = ¢, Then e (e He)* = e, He,, and ey, ¥ery can
be checked to be an idempotent in the field éffe, and hence
equal to ¢,, We deﬁngieq = ¢1% and .5 = ¢1€18.  The formulas

A\ \ztﬁe'yﬁ = ey If =

PN =0 if g=~y
7N
'S Cafp = €™, lpq = Cu

’,;'\ (Capy 4) = O unless o =y and 8=3

&

pa :,\'" ) (EQ‘S’ eﬁﬂ) = (81) 81)

foltow immediately from the definitions. Thus (e,s, e} = (far?1s;

"3’715’15_) = (e18651, €106p1) = 0 unless 8 = § and « = v, in which
case 1t equals (¢y, ¢,).

C set glleg is g one-dimensional space consisting of the

scalar multiples of ¢ag, for, given any x € H, euxes, € eHea =

Ca¥Ce = e for some o = CaXly = Ceng.

OfWe know that Xes is the Projection of y on Heg, and ¢,y that
Y on &, for any y ¢ g Therefore, if x € NV we have & =
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STa X = D on8 Ca¥€s = O ap Caples, Proving that the set of ele-
ments ¢, 1s an orthogonal basis for N, and that g,xe; is the pro-
jection of ¥ on efles. The Fourier coeficient ¢,5 can be com-
puted in the usual way, g = (¥, ap)/]| @agl|’. In view of the
displayed equations above, it is clear that we have proved the
following theorem: '

Theorem. Tke algebra N is isomorphic to the algebra of all com-,
plex matrices {cg) such that Jap| s |® < o0, under the corpe>
spondence x <> {cup} Where x = D ap Capap A Cop = (x,'\'éag)%
ez [[2. S

The following theorem is implicit in the above analysis!
N

A .
Theorem. Two minimal left ideals of H are{pperator) iso-
morphic if and only if they are included in the sapne minimal closed
two-sided ideal N. \\

Proof. Let I, and I, be the two idedls,"with self-adjoint gen-
erating idempotents ¢; and ey and goppose that I and I are
both included in N. If I, and Ip%are not orthogonal, then the
mapping ¥ — xe; maps I intol2 non-zero subideal of I3, and
since 7y and I, are minimal #he mapping is an isomorphism and
onto. The fact that such,& Mapping is an operator isomorphism
is due merely to the ass}aative law: y(xe;) = (yx)er. If I and
I, are perpendiculapsthen they can be extended to a maximal
collection of orthagenial minimal ideals as in the above theorem
and then the mdpping & — wey; furnishes the required isomor-
phism, R\

Conversjé}y, if 7, and I, are included in orthogonal minil.nal
two-sidéd) ideals N; and Ns, then they cannot be operator 1s0-
morphi¢ since N,(I.) = 0, whereas Ny(I1) = I1.

27F. Theorem. The following statements are equivalent:

() The minimal closed two-sided ideal N is finite dimensional.
(D) N contains an identity, as a subalgebra of H.

(¢) N contains a non-zero central element.

Proof. If N isfinite dimensional, then the finite sum ¢ = Doale
15 a selfadjoint idempotent such that, for every x € N, x=
e ¥ty = ¢ and x = 3. tu¥ — ex. Thus ¢ is an identity for N.
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For any ¥ € H we have xe = e(xe) = (ex)e = ex, so that ¢ is an
element of the center of . Thus (@) = (b) and (o). I eisan
identity for NV, then e, = ¢e, is the projection of ¢ on He, and so
¢= 2 ¢. Since the elements éx all have the same norm, this
sum must be finite and & is finite dimensional. ['inally, suppose
that &V contains a non-zero central element ¥, Since ae, = (xa e,
= %€y, the projection of x on He, is of the form ce, for some
constant ¢, and x = 37 co6,. Then cyegs = Xlgs = ¥ = C3flg)s0
that ¢z = ¢ and the coefficients ¢, are all equal. - Thus aggin the
sum must be finite and ¥ is finite dimensional. Alse\wé have
- seen that any central element of N is of the form e where ¢ is
the common value of the coefficients Ca O

Now let {N.} be the set of minimal closedtwo-sided ideals of
H. Then every x € H has a unique expansion ¥ = 3. x,, where
% 1s the projection of x on N, It is g:zlje\}f that (xv), = &y =
%¥ay and it follows in particular that xaNs central if x is central:
%y = (%¥)a = (yx)y = yx,. Therefére, given o, either x, = 0 for
every central element x or elge MNeMas an identity ¢, We thus
have the following corollary, &%

NS
<

Corollary, jf Hy is the m?:ipace of H which is the direct sum of

74

its finite dimensional migimal ideals, then cvery central element ¥
; : 7\ -

15 in Hy and has 4 B¥Pansion of the form x = Y. ¢uta, Where i
15 @ scalar and ¢, Bphe identity of Nauo Hy is the closed two-sided

tdeal generated é‘("&)’z’e central elements of H.
27G. If 7

. oo d \;h"commutative, then every element is central and
the minimalideals N, are 2] one-dimensional, each consisting of
the SCéllffir multiples of jtg identity ¢,. The minimal ideals N, are
thﬁ :?ijthogopal complements of the maximal ideals May and the
lgmor'norphlsm x> 2(M,) is given by £(M,) = (x, ¢a)/|| e [
That is, (M) is simply the coefficient of x in its expansion with
respect to the orthogonal basis tea). This follows from the fact
that the isomorphism between H/M, and the complex number
field is given by H/M, = N, = {caa}, and ce, o o

¢ continuous function 2y thyg has the value 1 at M and is

otherwise zero, so that the space 9 of maximal ideals has the
discrete topology.



Chapter VI

THE HAAR INTEGRAL

In this chapter we shall prove that there emstsﬁan‘ any locally
compact group a unique left invariant integral (efmeasure) called
the Haar integral. For the additive group,RJof real numbers,
the group R/1 of the reals modulo 1 and. ‘she Cartesian product
R* (Euclidean n-space) this is the ordigary Lebesgue integral.
For any discrete group, e.g., the group“f of the integers, the Haar
measure attaches to each point thesmeasure 1. In the case of an
infinite Cartesian product of unitdintervals (groups R/J) it is the
so-called toroidal measure of(Jessen. In each of these cases Haar =
measure is the obvious medstre already associated with the given
space in terms of its kho\Wn structure. However, in the case of
matrix groups it is, nut so clear what the measure is in terms of
structural considerations. And in more complicated groups the
reverse sltua.ts,qﬁ\has held—the invariant measure has been used
as an aid m\imcovermg structure, rather than the structure gLv-
Ing rise ) the measure. A general non-structural proof of the
ex13tg:ncé of an invariant measure is therefore of the utmost im-
porfagte. The first such proof, and the model for all later proofs,
was given by Haar in 1933 [22].

The first three sections center around the Haar integral, § 28
developing the necessary elementary topological properties of
groups, § 29 giving the existence and uniqueness proofs, and § 30
treating the modular function. The group algebra and some ele-
mentary theorems on representations are discussed in § 31 and
§ 32, and the chapter clases with the theory of invariant measures

on quotient spaces in § 33.
107
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§28. THE TOPOLOGY OF LOCALLY compact GROUPS

A topological group is a group G together with a topology on G
under which the group operations are continmous. Any group is a
topological group under the discrete topology, and in fact is
locally compact. The special groups R, R/{, R, (R/I)¥ men.
tioned in the introduction above are all locally compact Abelian
topological groups; the second and fourth arc compact. A.sifhple
example of a non-Abelian locally compact group is the group of
all linear transformations Yy = ax + 4 of the straight\ine into
itself such that 2 > 0, the topology being the ordinary topology
of the Cartesian half-plane of number pairs {an2) such that
2 > 0. More generally any group of » X gz-fuitrices which is
closed as a subset of Euclidean n®-dimensiddal space is a locally
compact group which is usually not Abehan. Groups such as
these are interesting to us because, belng locally compact, they
carry invariant measures by the géneral theorem of §29 and
therefore form natyral domains for general harmonic analysis.
Of course, there are large classgsiof topological groups which are
not locally compact and whith are of great importance in other
fields of mathematics. ¢

In this section we dgy'gl‘op the minimum amount of topological
material necessary, for integration theory.

28A. We start With some simple immediate consequences of
the definition 24 topological group.

1) If a is fixed, the mapping ¥ — ax is a homeomorphism of
G onto itsg’lf,’ taking the part of G around the identity ¢ into the
part ardwid 4. If 7 ig any neighborhood of ¢, then 4/ is a neigh-
borhaod of 4, and if {7 is any neighborhood of a, then a7 *U1s a
.néfghborhood of ¢. Thus G is “homogeneous” in the sense that
1ts” topology around any point is the same as around any other
pont. The mapping ¥ — g is another homeomorphism taking

¢into a. The inverse mapping x — x~is also a homeomorphism
of G onto itself,

2) Every neighborhood 7 of
hood 77 of ¢, that
U N U has thig
vanishes off I, the

¢ includes a symmetric neighbor-
is, one such that 7 = gr—1. In fact W =
property.  Similarly if £ is continuous and
n g(x) = f(x) + /(=Y is symmetric (¢(x) =
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g(x™1)) and wvanishes off 7, while A(x) = f(x) + /(™) is Her
mitian symmetric (A{x) = A(x"1)).

3) Every neighborhood U of ¢ includes a neighborhood 7 of ¢
such that 772 = V- ¥ < U, for the inverse image of the open set
U under the continuous function xy i1s an open set in G X G
containing (e, ¢), and hence must include a set of the form 7 X 7.
Similarly, by taking 77 symmetric, or by considering the continu-_
ous functions xy ! and x 'y, we can find 7" such that 777~ cW&
or such that /71 < U. <\

We notice that #—'¥ < U if and only if &/ ¢ U whénever
e C al. ) N

4) The product of two compact sets is compact. For if £ and
B are compact, then A4 X B is compact in G X&) and with this
set as domain, the range of the continuous{Gnction xy 1s 4B,
which is therefore compact (see 2H). (¢

5) If A 1s any subset of G, then A =.~ﬂ‘v AV, the intersection
being taken over all neighborhoods % of the identity e. For if
¥y € A and 7 is given, then y¥ ' i§2n open set containing y and
so contains a point x € 4. Thus y € «¥ < AV, proving that
A © AV for every such ¥, aud hence that A< wAV. Con-
versely, if y < |y AV, then y¥ " intersects A for every 7 and
y € 4. Thus Ny AN

6) If 7 is a symmstric compact neighborhood of e, then 2™
18 compact for evésrj; # and the subgroup 7* = lim, .. 7™ is
thus oucompagt',&“éountable union of compact sets). It is clearly
an open se’ts,\:s\fﬁ’ce y € V* implies y¥ < V*V = V¥, and since
Ve~ < I = P it is also closed. The left cosets of /7% are all
open-cleged sets, so that G is a (perhaps uncountable) union of
diijﬁh;t" a-compact open-closed sets. This remark 1s important
because it ensures that no pathology can arise in the measure
theory of a locally compact group (see 15D).

N

28B. Theorem. If f € L (the algebra of continuous functions
with compact support), then [ is left (and right) uniformiy continu-
ous. That is, given e, there exists a neighborhood V of the identity
¢ such that 5 € V implies that | flsx) — f(x) | < e for all %, or,
equivalently, such that xy~* € V implies that | Fo) —F) | < e
for all x and y.
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Proof. Choose a compact set C such that / € I, (l.e., such
that f = 0 off C) and a symmetric compact neichborhood U of
the identity. By SF the set ## of points s such that | flsx) —
J&) | < eforevery x € UC is open, and it clearly contains the
identity s = ¢, If 5 € U, then J(sx) and f(x) both vanish out-
side of UC. Therefore if s € ¥ = }J# N U, then | Alsx) — flx) |
< e for every x, q.e.d. )

Given a function £ on G we define the functions £, and f‘*\)}f
the equations f,(x) = flsxh /(%) = flxsY). They can belthought
of as left and right translates of /. The choice of s in(3ne defini-
tion and 577 in the other is necessary if we desire the ‘associative
laws fo = (£.), fot = (/)% (For other reason&/f, is often de-
ﬁned b}’fs(x‘) =f(5'_1x)_) & M

Corollary. If JEL 1Z2p=w and INAs an integral on L,
then fs and f*, as elements of LP(D), arekontinuons functions of s.

Proof. The case p = w0 is simply ‘the uniform continuity of £,
for we saw above that /e = F 8K € whenever s € 7. Using
this same 7 and choosing C sovthat / € L, let B be a bound for
I (see 16C) on the compaet set 7C. Then | /=7l =
I fo ~f Mo < Bl % 1[I, < Bieifs ¢ 7, proving the
continuity of £, in LP.'\‘Similarly for fo.

280:. Quotient spa&s. If § is any class and ] is a partition
of § into a family~of disjoint subclasses (equivalence classes),
then tht? quo!z'e{zi space §/[], or the fibering of § by 1T, is obtained
by consideting’each equivalence class as a single point. If Sis a
topolpg(\@\ﬁpace, there are two natural requirements that can
~ be Ia'l,d'fdown for a related topology on §/T]. The first is that

the fatural mapping « of § onto §/I1, in which each point of §
maps Into the equivalence class containing it, be continuous.
Thus a subser 4 of §/17 should not be taken as an open set un-
!353 Of‘l(d? is open in §. The second requirement is that, if /
on § which is constant on each equiv-
alence class of I, then the related function ¥ on §/ IT defined
by .F(a(x)) = f(x} should he continuous on §/J[. In order to
nd requirement the topology for §/]] is made as
as possible subject to the first requirement: a sub-
18 defined to be open if ang only if a~!(4) is an

strong (large)
set 4 of §/]
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open subset of §. Then the mapping « is continuous, by defini-
tion.  Moreover, if /is continuous on § and constant on the sets
of I, then o= Y(F~1 () = /7HU) is open whenever U is open,
Therefore, F1(U) is open whenever I is open and the related
function F is continuous.

Clearly a subset B of §/T] is closed if and only if (5 is
closed in §. In particular, if each equivalence class of J] is a™\
closed subset of S, then each point of §/]] is a closed set in S/{[,
and §/]] is what is called a 7Ty-space. PR\

These considerations apply in particular to the quotient-space
of left cosets of a subgroup H in a topological group G-y More-
over, such fiberings G/H have further properties #hich do not
hold in general. Thus: N4

Theorem. If H is a subgroup of a topols ii;?b’:g*mup G, then the
natural mapping « of G ento the left cajqz’;%ace G/H is an open
mapping, that is, o A) is open if 4 is gpent.

Proof. Suppose that £ is opeq:(;WIa have a Yad) = AH =
U {4x: x € 13, which is a upion of open sets and therefore
open. But then o is open hyndefinition of the topology in G/H,
g.e.d. ~\

Corollary 1. If G is zfo}z)@ compact, then G/H is locally compact,
for any subgroup H.,\“'gf

Proof. If ¢ isj‘ci"cfompact subset of G, then «(C) is a compact
subset of G/H{since o is a continuous mapping-—see 2H). If
x interiqr,j'(f , then the above theorem implies that a(x) € in-
terior (a;(@)'. Thus compact neighborhoods map into compact
neighbothoods, proving the corollary.

Corollary 2, 7, 'f G is locally compact and B is a compact closed
subset of G/H, then there exists a compact set A < G such that B
= a(d),

Proof. Tet € bea compact neighborhood of the identity in G
and choose points «;, ---, w4, such that B < U a(x:C) =
a(lJ":C). Then a}B) N ([J."*:C) is a compact subset of Q,
and its image under « is B since it is simply the set of points in
Ui".C which map into B.
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28D. We now show that for the purposes of integration theory
a topological group can be assumed to be a Hausdorff space.

Theorem. A fopological group G has a minimal closed normal
subgroup, and hence a maximal quotient group which is a Ti-space.

Proof. Let H be the smallest closed sct containing the iden-
tity. We show that H is a subgroup. For if y € H, then ¢ €
Hy 1 and so H < Hy ™ (H being the smallest closed set coftain-
ing ¢}, Thus if x, y € H, then x ¢ Hy~! and xy EO{J‘.\ Since
H™' 1s closed, it follows similarly that # < I/~ ~Fhus H is
closed under multiplication and taking inverses;, ‘t}.}:;’t is, H 13 a
subgroup. ) e\

Moreover, H is normal, for H < xHx™! far‘:éx;cry x and conse-
quently x'Hx c H for every x, so that s xHx~* for every x.

Since H is the smallest subgroup of,G.\};v'hich is closed, G/H is
the largest quatient group of G whigh:]'}zlé a T, topology.

Lemma. A topological group whith is a T \-Space 15 a Hausdorff
space. N

a3

Proof. Ifs 5 y,let U belthe open set which is the complement
of the point ¥y ! and/€hoose 2 symmetric neighborhood 7 of
the identity so that #3C U, Then ¥ does not intersect ¥ay™
and Yy and Vx ay‘a\t\l)erefore disjoint open sets containing y and
¥ respectively. ,\J

Every contigtious function on a topological group G is coB-
stant on :all:}he cosets of the minimal closed subgroup H. It fol-
lc.)ws ,tbéﬁ"the same is true for all Baire functions. Thus the con-
tinuels functions and Baire functions on G are, essentlally, just
'ﬂf‘;‘}”é on G/H, so that from the point of view of integration theory

“we may replace G by G/H, or, equivalently, we may assume that
G 1s a Hausdorff space. For simplicity this property will be as-
sumed for all groups from now on, although many results (ff?f
example, those of the next three numbers) will not depend on 1t

§29. THE HAAR INTEGRAL

We shall follow Weil 48] in our proof of the existence of Haaf
measure and then give a new proof of its uniqueness. ‘This pro-
cedure suffers from the defect that the axiom of choice is invoked
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in the existence proof, here in the guise of choosing a point in a
Cartesian product space, and then is demonstrated to be theo-
retically unnecessary when the chosen functional is found to be
unique. There are proofs which avoid this difficulty by simul-
taneously demonstrating existence and uniqueness (see [7] and

[33]), but they are more complicated and less Intuitive, and we

have chosen to sacrifice the greater elegance of such a proof fops

the simplicity of the traditional method, .
29A. If f and g are non-zero functions of L*, then theregéxist
positive constants ¢; and points 5, § = 1, «++, n, such thap)

J) S Tt euglow), P
For example, if m; and m, are the maximum valueE}\()ff and g re-
spectively, then the ¢; can all be taken equaltc any number
greater than my/m,. The Haar covering funélon (f; g) is defined
as the greatest lower bound of the set of alkyims 3% ¢; of coefficients
of such linear combinations of transiates vf'g.

N

N\

The number (f; g) is evidently a}fr’éugh measure of the size of

S relative to g, and the propertiestlisted below, which depend di-
rectly upon its definition, show ‘that if g 1s fixed it behaves some-
what like an invariant integfal.

O

M) Ko = (o).

@ e S (s 9 + Ui 9.
3) \(’Zﬁg) = ¢(f;g) where ¢>0.
4) A2 = (D S (2.
® ¥ Ui B < (s Dz 1.

© NV (f8) = mg/m,.

In order to see (6) we choose x so that f(x) = my, and then have
mr 23 ciglow) < (2. eaymy, so that (O ) Z my/mg. (5) fol-
lows from the remark that, if f(x) £ 2 cig(saw) and g(x) =
2 dih{tiw), then J&) £ 2 cdip(tus). Thus (f; %) = glb
2 cid; = (glb 3 ) (glb 3d5) = (f; £)(g; ). The other proper-
tes are obvious. : :
29B. In order to make (f; £ a more accurate estimate of rela-
tive size, it is necessary to take g with smaller and smaller sup-
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port, and then, in order that the result be an absolute estimate of
the size of £, we must take a ratio. We accordingly fix fy € L
{fo # 0) for once and for all, and define Z,(f) as (f; ¢)/(fo; 0).
It follows from (5) that

7 V{fes /) 2 LY 2 (f5 /o)

so that I,f 1s bounded above and below independently of ¢.
Also, 1t follows from (1}, (2) and (3) that 7, 1s Jeft invariapt, sub-
additive and homogeneous. We now show that, for sin\ra\ll o, L,
is nearly additive. N\

Lemma. Given fi and fo in LM and ¢ > 0, rﬁ'g*r?}cxz'm a neigh-
borhood V of the identity such that )

RY
(8) prfl + I¢f2 = -‘Tsﬂ(fl ‘l‘{z} +~ €
Jorall o € Ly, \’\ !

Proof. Choose /' < L+ such tl}a’t’ F =1 on the set where
H+/o>0 Let §and ¢ for,.tfie moment be arbitrary and set
S=At+h+ &, h=Ffi/frdx= 1,2 It is understood that &
is defined to be zero wherdf = 0 and it is clear that 4; € L™.
Choose 7 such that | 26— 5:(y) | < ¢ wheneverx—'y € 7 (by
28B). If ¢ € Lty and f(x} £ 3 cjolsx), then o(sx) #0 =
| 2i(x) — ki(fjl_l)Jk\Er, and

FAE Femtn) £ T cools,)hils)
\,:glv < 3 crols )l + €]
,-’;.:\ (fis @) = 2clhis;i ™) + €]
O (fis0) + (fa; 0) £ T ]l + 2¢1]
N Since 2. ¢ approximates (f; ©), we have
Lofi+ Lofa S L/IU A+ 261 < (LA + f) + SL(ONL + 2¢)

The lemma follows if § and ¢ are initially chosen so that

2 (f1 4 fos ) + (1 +20F /o) < e i
29C. We have seen above that I, becomes more nearly an 1

vanant integral the smaller ¢ is taken, and it remains only to

take some klpd of generalized limit with respect to ¢ to 8¢t the
desired invariant integral.
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Theotem. There exists a non-trivial non-negative left invariant
integral on L.

Proof. For every non-zero f € L% let §; be the closed interval
(1/(fo; /)5 (f;5 /o)), and let & be the compact Hausdorff space
I1; 8; (the Cartesian product of the spaces §5). For each non-
zero ¢ € L* the functional 7, is a point in S, its f coordinate
(its projection on §;) being 7,f. For each neighborhood 7 of the
identity in G, let Cp be the closure in § of the set o € L;;f}\
The compact sets Cy have the finite intersection property(sthce
Cr, M- N Cv, = Cp,n.nvy- Let I be any point in thg inter-
section of all the Cy. That is, given any ¥ and givew s Lo
and e > 0, there exists ¢ € Ly* such that | I(f) f“};(fg) | < ¢
i=1, .-, n It follows from this approximatiohand 29B that
I is non-negative, left invariant, additive andzhdmogeneous, and
that 1/(fo; /) = I(f) = (f; fo). The extension of I from L+
to L, obtained by defining I(f; — f3) as{f1) — I(f2), is there-
fore a non-trivial left invariant integraly ‘as desired.

The integral 7 is extended to thelelass of non-negative Baire
functions as in Chapter 3 and theiWwhole machinery of Lebesgue
theory is available, as set forgh in that chapter. We emphasize
only one fact: that a locally{Coinpact group is 2 union of disjoint
open-closed g-compact sgi:ﬁets {28A, 6) and therefore the difficul-
ties which can plagug,nén ¢ finite measures do not arise here,
For instance the p\t’(’)Bf that (L1)* = I* as sketched in 15D is

available. (See,af§s 13E.)

AL ) . .
20D. Thqo.jf’&l- The above integral is unigue to within a multi-
Dlicative constant.

Prooky/ Let [ and J be two left invariant non-negative inte-
grals over I and let f € L*. We choose a compact set C such
that f < Le™, an open set U7 with compact closure such that
€U and a function f € LT such that // =1 on U. Given
& we furthermore choose a symmetric neighborhood 7 of the
Wentity such that || £, — f*||, < € if 3, € 7, and such that
CV U 7C) U The latter condition guarantees thatf(xy).=
Je)f (%) and Jx) = flyx)f(x) if ¥y € 7, and together with
the former implies that | f(xy) — f(yx) | < ef'(x) for all x. Let
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% be any non-zero symmetric function in Ly 7. The above con-
ditions, together with the Fubini theorem and the left invariance
of I and J, imply that

IR () = LJ 2/ G) = 1, ] 25 (55)
JWI(f) = LIHARIO) = L] Ay 20/()
= LLAGTD/0) = JLAG ). o
LBy = JWIN | = LG FGx) — S0
< e, J MO ) = LI,

Similarly, if g € L’ and 4 is symmetric and iLiimbly restricted,
then “\

| I0T@ — JWIe) | £ ),

. {7)
where g’ is fixed, and has the same refation to g that /' has to /.

Thus
19 10| 0, 1)
0 " I IS Ty T I

and, since e is arbitrary, the left member is zero and the ratios
are equal. Thus if gy §'¥ixed and ¢ = Jge)/I(go), then j(f) =
eI(f) for all f € +{,f<~:6mpleting the proof of the theorem.

~ If I'is known %o Be right invariant as well as left invariant, a8
13 the case, fordnstance, if G is commutative, then the uniqueness
proof is trivial For if f and £ € L+ and A*(x) = A{x~), then

TRLF) = LA = JLAG ey = L] b))
:.\:f.’z' = mfyﬁ(x‘ly)f(y) — ]y}':;2$(y-1x)f(y)

QO = LLEF(3) = I (),
so that J(f) = cI(f) where ¢ = JBY/ I(A™).

29E. Theorem. G /s compact if and only if p(G) <® (the
constant functions are summable)
Proof.
Conversel
1dentity

finite set

If G is compact, then 1 & L, and u(G) = I(1) <*
¥, if G is not compact and if 7 is a neighborhood of the
with compact closure, then G cannot be covered by 2
of translates of 7. Therefore we can choose a sequence
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{pu} of points in G such that p, & Ui 2. Now let U be
a symmetric neighborhood such that U2 © 7. Then the open
sets p, U are all disjoint, for if m > » and 2.U N 2, U 5 o,
then p,, € 2,U% © 9,7, a contradiction. Since the common
meagure of the open sets p,07 is positive, it follows that the meas.
ure of G is infinite, and the constant functions are not summable,
q.e.d. ~
If G 1s compact, Haar measure is customarily normalized\ $Q
that 1(G) = 1 ( 1 du = I(1) = 1). O

277%G
S

S

30A. Left invariant Haar measure need not“yevalso right in-
variant—in general J{ f%) < I(f). Howevergpifdis fixed, (M is
a left invariant integral, 1/ = I{f%) 53, and because of
the uniqueness of Haar measure there gxists a positive constant

A{#) such that R
I = a@T).

The function A(#) is called the mSIular Sunction of Gy if A() =1,
so that Haar measure is bottleft and right invariant, G is said

to be unimodular, ‘ \"

Lemma. J7Gis Abelian or compact, then G is unimodular.

§30. THE MODULAR FuNcTION

Proof. The Abglian case is trivial. If G is compact and if
S=1, then AGY= AGI(S) = I(f) = I(1) = 1, so that the
compact case s"also practically trivial.

We havelready observed earlier that, if £ € L, then I(f*) 1s
a contifious function of £ Thus A(9) is continuous. Also
AGOES) = I(f9 = (Y = AWIF) = AGDADI(S). Thus
?(f) IS & continuous homomorphism of G into the positive real num-

£FF.

30B, As might be expected, Haar measure is not ordinarily in-
verse invariant, and the modular function again plays its adjust-

ing role, We use the customary notation f F(x) dx instead of

{(f) below because of its greater flexibility in exhibiting the
variable,
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Theorem. f ) AGe™Y) dx = f F(x) d.
Before starting the proof we define the function f* by

SR = fam) AT,

The complex conjugate is taken so that, at the appropriate mo-

ment, the mapping / — f* will be seen to be an involution.
The formulas \

f*s = A(J)fs*a fs* = A(J')f*s N

¢(\A
follow directly from the definition. O

Proof. In proof of the theorem we first observe’ that the in-
tegral above, J(f) = I(f*7), is left invariant: JOf5) = I(f:*7) =
AN = 1(f*7)y = J(). 'I‘herefore"’%(f) = ¢I{f). But
now, given ¢, we can choose a symmettis, heighborhood 7 of ¢
on which |1 — A(s) | < ¢ and then cl@o}é a symmetric f € Lyt
such that I(f) = 1, giving

"

t=cl =10 = Qi | = 1) =
= (@~ a7 ] < i) =«

Since e 1s arbitrary, ¢ =(N q.e.d.

Corollary 1. /Y&l if and only if f € LY, and || /¥l =
| £l This fqll%s from the theorem and the fact that L 15
dense in L', Q"

Corollary2. Haar measure is inverse invariant if and only f
Gis ur&ndduiar.
E{OC The following theorem does not really belong here, but
\'"t{)efe seems to be no better spot for it.

Theotem. Jf g e 12 (1 < p < ), then gs and g a5 elements
of LP, are continuous functions of s.

Proof. Given ¢, we choose JF € L so that ||g'f[|ﬂ =

& '"fs lo < /3 and by 28B we choose ¥ so that || f —Js s
<e/3ifs € V. Then

le—albslle~fll+ 1 s —sill +11 /o — &l <

Fse7, showing that g, is a continuous function of s at § = &
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Since || /* — g ||, = A()Y?]| £ — g||,, the above inequality re-
mains valid when g, and /; are replaced by g* and /* if the choice
of 7 18 now modified so that || / — /||, < ¢/6 and A(s)V? < 2
when s € . The equations || foo — fulls = || /o — /||, and
| /= — f2llo = A(x)?]] f* — £ ||, show that both functions are
continuous everywhere, and, in fact, that £, is left uniformly
continuous.

30D. The classes of groups treated in detail in this bookyg
Abelian and compact groups, are unimodular. However, many
important groups are not unimodular, and it will be worth-while
to exhibit a class of such groups. Let G and H be loca]ly.gdmpact
unimodular groups and suppose that each ¢ € G defines ah auto-
morphism of H (that is, G is mapped homomorphically into the
automorphism group of H), the result of appljing o to an ele-
ment x € H being designated o(x). The reader can check that
the Cartesian product G X I becomes agtotip if multiplication -
is defined by O

{o1, %1 ){aa, ¥2) = (ﬁ?é; ;7"2’(%'1)94'2)-

Furthermore, if ¢(%) is continuo;:;s: in the two variables ¢ and
simultaneously, then this groups locally compact in the ordi-
nary Cartesian product topology. Such a group is called a semi-
direct product of H by G Mt contains H as a normal subgroup
and each coset of thénguotient group contains exactly one ele-
ment of G. ,\“i" _

If 4 and B atg,eompact subsets of G and H respectively, then
(00, %o)(4 X B)Ss the set of all pairs {(s¢o, o(¥o)x) such that -
o &€ 4 and £ B. 1f we compute the Cartesian product meas-
ure of th'{s’ Set by the Fubini theorem, integrating first with re-
specttow, we get u(4)»(B), where u and » are the Haar measures
in G and H respectively. This is also the product measure r::f
A4 X B. Thus the Cartesian product measure is the left invari-
ant Haar measure for the semi-direct product group.

To compute the modular function A we consider (4 X B){vo,
%oy = (dog) X (66{B)xy), whose product measure is u(A)r(oq(B)).
If the automorphism ¢, multiplies the Haar measure in H by a
factor 8(cq), then the above measure is 8{eg)u(A)v(B). The mOdl-l—
lar function A({g, x3) therefore has the value 8(¢), and the semi-
direct product is unimodular only if § = 1.
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As a simple example we take H= R, the additive group of
the real numbers, and G as the multiplicative group of the posi-
tive reals, with o(x) = o-x. Thus (4, x3(5, y) = (@b, bx + y)and
A({a, x)) = a. This group is, therefore, not unimodular.

30E. It is clear that, if G and H are not unimodular, but have
modular functions A; and A, respectively, then the above calcu-
lation will give the modular function A in terms of Aq and A,.
Cartestan product measure is seen to be the left invariant Haar
measure exactly as above, but now the product megsure of
(4 X B){oo, %0) = (Aday) X {oo(B)xg) 1s 5(0'0)41(03‘)32(*?0)
[u(A)»(B)] so that A

Ao, #)) = 8(D)A1(@)da(x).  HN

If in this situation we take /7 as the additivék}oup of the real
numbers (so that A; = 1) and olx) = x[&e)] ™!, then 8(o) =
Ay(o) 7! and A{{e, ) = 1. Thus any Jatally compact group G
can be enlarged slightly to a unimodgl}a} group which is a semi-

direct product of the reals by G. Thi§ was pointed out by Glea-
son [18]. A\

Y

§31. THE\GROUP ALGEBRA

_In this section we prové the existence of the convolution opera-
tion and show that \(i‘t.}i it as multiplication L'(G) becomes a
Banach algebra, 316¥G then establish some of the special prop-
- erties of this algebta which follow more or less immediately from
©its definition, ()

31A. V%«Qine the convolution of f with g, denoted fx g by

h
Vadle) = [ ey dy = [ Fongtrro

er‘;équality f.)f the integrals being assured by the left invariance
of the Haar. integral. The ordinary convolution integral on the

real line, f_mf(” =~ 2)8(y) dy, is obviously a special case of this

definition, It algo a

-
NS

. : grees with and generalizes the classical no-
tion used in the theory of finjte groups. A finite group G is com-
pact if it is given the discrete topology, and the points of G, being
congruent non-void open sets, must have equal positive Haar
measures. If the Haar measure of G is normalized by giving
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each point the measure I, and if / and g are any two complex-
valued functions on G, then

Fag) = [ Fo)e™) dy = ufe™) = Tuveaf)g®

which is the classical formula for convolution.
The above definition is purely formal and we must start by
showing that f x g exists. A

Lemma., [ff & Lyandg & Lp, then fsg € Lag. O\

Proof. The integrand f(y)g(y *x) is continuous as a_finction
of ¥ for every x and is zero unless ¥ € 4 and y ~'x @B." Thus
S #g(x) is defined for every x and is zero unless x,&%7B5. Also

m\ )
| fagle)) = faglo)| S| fu — Fo Hm-ﬂ gy 4y and since

fz is by 28B continuous in the uniform no;'m\\as a function of »
it follows that f % g is continuous. - *)

Theorem. 17/, g € ®T, then f(y)g(y;lx) € @M G X G) and
gl S NSl g [l where LS < .

Proof. Let /o g be the funceon f(y)g(y~'x). If f € L, then
the family of functions g €@ such that fog € ™G X G} is
L-monotone and irmludes'f)ﬁrJ and is therefore equal to &7 .
Thus if g is an Z-boudded function of &7, then the family of
fanctions f € ®+ sukh that fog € ®F includes L* and is L- -
monotone, and thefefore equals ® . In particular fog € &t -
whenever andt}"are I-bounded functions of ®. The genefal
assertion thehifollows from the fact that any non-negative Baire
function i the limit of an increasing sequence of L-bounded
Bail‘@.{u}’ib’tions. The Fubini theorem implies that f(»)g(y ~'x) is

integ\ﬂiﬂe in y for every x, that (/% g)() =ff(y)g(y‘1x) dy is

integrable, and that || fx |l = [[fO)el ) dv dy =

71l g |l 1f% € @™ then also f(3)g(y " 0)A(x) € BTG X 6)
(see 13C) and, as above,

Frg ) = [ 10| [sr=08 a’x] gy = | 7l g i 2l
by the general Holder inequality 14C.
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It follows, using 15C, that || fxgll, = || £1|\l] g, and, in
particular, that fxg € L7 if /& L! and g < I The case
» = ® is obvious.

Corollary. Iff € L' and g & L2, then f(y)g(y~"x) is summable
iny for almost all 5, (f x () € L2 and || F g |1y = 11 7 il gl
Proof. The sixteen convolutions obtained by separating each
of f and g into its four non-negative parts belong to P b the
above theorem, and their sum, which is equal to ff(y)g{'}i?‘x) dx

'\
wherever all sixteen are finite, is thus an element of \L# (with the
usual ambiguity about its definition at points whepe'the summands
assume opposite infinities as values). Moredver, !| frg|l, S
| | /1= Lzl = | f il 211, by the aboveé\theorem.

31B. Theorem. Under convolution m\\ ‘mudtiplication LHG)
Sforms a Banack algebra having a nglipal continuous involution

S =

Pro_of. We have seen earligpﬁi:'h‘;lt the mapping f — /* of L!
onto itself is norm preserving, and we now complete the proof

that it is an involution. Alt is clearly additive and conjugate
linear. Also ~

06 = { o) s H a0 dy

S GTNAGAGT DA dy
| NO7 = e,
80 th:?‘q:(}* OF = g % f*,
~ he assoctativity of convolution depends on the left invariance
&{t‘;he Haar integral, Iffg 2 € &7, we have

S0 D = [0+ 000ty @y
=fff(xy2)g(2‘l)fz(y“) dy dz
= Jf Feeeyntr ) ay a
= [ Alg s B ds = (fu (g M-
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The associative law i1s therefore valid for any combination of
functions from the L7 classes for which the convolutions involved
are all defined. The convolution fx g is also clearly linear in
fand g. Since L' is closed under convolution and [| f+g||, <
[| #Ili-|l gl by 314, it follows that L' is a Banach algebra with
convolution as multiplication. It is called the group algebra (or
group ring) of G, and generalizes the notion of group algebra
used In the classical theory of finite groups.

We prove below a number of useful elementary properties\ot

QY

the group algebra LY(G). N
31C. Theorem. LYG) is commutative if and only gﬂ@«.z'.s‘ com-
mitative. '\\

Proof. If G is commutative, then G is also uhimodular and

A
Fre=[ e dr = [l @D dy = g5/,

Now suppose that LYG) is commgtaii:jiia;e and that f, g€ L.
Then &N

0= fug~gnf=[[F)er™ - M0l dy
= [0 HaG™) — oy o
Since this holds for evek\g in L, it follows that
NHo) Ay — fla) = 0.
Taking x = e:‘vig:(-r\j;ave Alu) = 1, so that f(xu) — flux) = 0 for

every f in BN Since L separates points, it follows that xu — ux
= { and.&is commutative.
N

31@} Theorem. L(G) kas an identity if and only if G is dis-
crete,

Proof. If G is discrete, the points of G are congruent open sets
having equal positive Haar measures which may be taken as 1.
Then f(x) is summable if and only if f(x) = 0 except on a count-
able set {x,} and 3 | f(#a) | < w. The function e(x) whichis 1
at ¥ = ¢ and zero elsewhere is an identity:

S e(x) = f Fe(y™tx) dy = X, f()e(y ™) = f(x)-
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Conversely suppose that «(x) is an identity for L. We show
that there is a positive lower bound to the measures of non-void
open {Baire) sets. Otherwise, given any e therc exists an open
neighborhood 7 of the identity ¢ whose measure is less than €,

and hence one such that f] u(x) | dx < e. Choose a symmetric
v

U so that U? € 7 and let £ be its characteristic function. Then

S = @ = futnfrn dy = [t ay < [lifR

for almost all » in U, contradicting f(x) = 1 in U. ,.I‘E'é}efore,
there is a number 2 > 0 such that the measure of every non-void
open Baire set is at least 4. From this it follows. at once that
every open set whose closure is compact, and\ Which therefore
has finite measure, contains only a finite\set of points, since
otherwise its measure is seen to be = nafov every n by choosing
n disjoint non-void open subsets. Thffsé’fore, every point is an
open set, and the topology is discrete™\"
31E. In any case Z1(G) has am¥ approximate identity.”

Theorem. Given f < L» (1}':‘=v<:10 < w) and e > 0, there exists &
neighborhood V of the fdefzfitij”e such that || fxu — fl|, < e and
oo f—f o < e w}zezze}wr u is any function of L'V such that

# = 0 outside of ¥ éye\dfu = 1.

) Proof. If A I:q the Fubini theorem and Holder inequality
imply that R

|G~ 81 = | [[ao) 59 — 770 o
Q¥ < li2lle fllfim = /llput) .

Thus || » *f ~ 7l gf“fy*l = fllse(y) dy. If ¥ is chosen (by
30C) so that || £, — 7 o < e whenever y € ¥ and if u € (L')v"s
then [l =/, < efu =

The proof for J#u is similar but somewhat complicated by

: modularity., If 4 = u(x~1) dx, then



THE HAAR INTEGRAL 125
|Fra—pm | = [0y = f63/mu(r=4G) dy d|
< 11l 1l me™ = £ oty =/m) o
wnd | fon = £l & [l = 7 sty my. Nowm 1

as ¥ decreases. (For m :f[u(x_l) Al A(}c) dx, where™\

fza(xhl) Al dx = fulx) =1, A(x) is continuous aqd\”)&[})
= 1.) Thus there exists 7 such that {f mf — £ |[, <, e'i'f\j?_l €
Vandu € (LV)y+, giving || f+u — fllp < ef[a(y&l}’/m] dy = e

The neighborhoods of the identity 7 form @ directed system
under inclusion, and if «y is a non-negatiyésfanction vanishing

A\ N
off 7 and satisfying qu = 1, then #pxf and fa uy converge

to f in the pth norm for any f € L?ifl;"},r the above theorem. The
directed system of functions #y edft be used in place of an iden-
tity for many arguments and iswalled an approximate ideniity.

31F. Theorem. A closed subset of L' is a left (vight) ideal if
and only if it is a left (right) invariant subspace.

Proof. Let 7 b closed left ideal and let # run through an
approximate ideatity. If f € 7, then s, »f € 1. But u.4f=
(2% f)s — ﬁrg%mce # % f — f, and therefore f, € 1. Thus every
closed left ddeal is a left invariant subspace.

Now et 7 be a closed left invariant subspace of L'. 1f I*1s
the €e8'6f all ¢ € L= such that (f, g) = 0 for every f & I, then
we knbw (see 8C) that 7 = (I1)4, Le., that, if f € L, then/ € J
if and only if (f, g = 0 for every g € I*. But wWhre L fel

wd ¢ € 14, then (i o/, ) = [V dy de = [4)

f{f (y "'x)g(x) dx] dy = O (since f, L g for every y), which proves

by the above remark that 2/ € I. Thatis, [ is a left ideal.
The same proof, with only trivial modifications, works for
right ideals.
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31G. We conclude this section with some remarks about posi-
tive definite functions. For this discussion we restrict ourselves .
exclusively to unimodular groups. It will be remembered that
the notion of positivity was introduced in connection with an ab.
stract Banach algebra having a continuous involution. The al.
gebra which we have before us now is LYG), and we start with
the ideal L° consisting of the uniformly continuous functions of
L, and the function ¢ on L° defined by o(f) = fe). “Jihen

o{f %) =ff(x)f(—x)_a’x =l fll:= 0. Thus ¢ is po\éi‘t\i% and

Heis L2(G). Since || gf|la < || glle-Il £ |l the. perators U,
defined by Uyf = g «f are bounded and the mapping ¢ — U,
1s 2 s-representation of LY(G). It is called the“lé}"t regular repre-
sentation and will be discussed further in 32D. The functional
¢ 1s thus unitary, but is clearly not com;i:f;m\éus (in the L! norm).

At the other extreme are the positiye functionals which are
continuous in the L! norm. O

Lemma. A positive funcrz'q?;d;[ on LXG) is continuous if and
ondy if it is extendable. ™~

tive functional is akkt{gm’atically continuous, The converse Im-
_phcatlon follows hpce because of the existence of an approximate
1dentity. Givenga Continuous positive functional P, we have

Proof. We have seep{eatlier (26I) that any extendable posi-

| PUMND= lim | P(f & ) 2 < P(f 4 /*) Tim Plu* 5 )

SO =1 PYPG s,
\»«; D P = lim P(f* 4 ) = lim Pla* » A =P,
proving the lemma,
Now every continuous functional P on L is given by a func-
ton p € L% and, if P is positive, p is called positive definite.

Notice that then P =p* for (, p) = P(f) = P(/") =m
= (o, f*_) = (fyp*) for every f C L. This notion of positive defi-
niteness 1s formally the same as that introduced in 26, the fixed
unitary functional being that considered in the first paragraph

above: P(f) = (f,p) = (f, p*) = (2,f*) = [p sflle) = o */)-
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The condition that a function p € L* be positive definite can
be written

ff FEfp(xy™) dsdy 2 0
for every f € L.
§32. REPRESENTATIONS

32A. A representation T of G is a strongly continuous homo-
morphism of G onto a group of linear transformations on a cotd)
plex vector space X. That is, if 7, is the transformation{aso-
ciated with the group element s, then T, = 7,7, and Tof) is a
continuous function of s for every x £ X. If X is fiife dimen-
sional, this requirement of continuity can be expreéssed as the
continuity of the coefficients in the matrix for £e when a fixed
basis has been chosen for X. When X is iffinite dimensional
some kind of topology for X must be spetified. Usually X is a
Banach space and here we shall confine“ourselves to reflexive
Banach spaces and Hilbert space. Bwill be said to be bounded
if there is a uniform bound to thelhorms || 75|, s € G. Tisa
unitary representation if X is a Hilbert space and the transforma-
tions 7T, are all unitary. i\

32B. [f Tisa bounded%\f;‘e.rem‘m‘im of G on a reflexive Banach
Space X and if Ty isdefined as f ST, dx for every f € L, then

the mapping f —9\3‘; is a bounded representation of L'(G). If T
5 unitary, ﬂz&%tﬁ'a’ integrated represeniation is a x-vepresentation
of LNG).
‘oW
PmO{?_ y“The function

P(f, %, 3) = f H (T, y) ds = f )y (Tox) ds

ls trilinear and satisfies | F(f, w, 5) | < || £ Bl = | I¥ [l It

follows exactly as in 26F that there is a uniquely determined

linear transformation 7y such that (7, ¥) =ff(£)(Ts9¢°, ) ds,

” Tf” é B” f ”1, and the mapping f — Tf iS Iinear. More-

Over,

Q"
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(Tyasr ) = [ ORI T, 3) dr ds
= [[ F056) i, 3) ds

— [T Tx, 39 ds as = [o(5)(Tor, (T2 ds
Q!

~[@u @) = (T L

Thus Ty, , = T;T¢ and the mapping / — Tyisa l]olﬁamérphism.

If X is a Hilbert space and 7 is a unitary repres€iitation, then

__ (¢ -
(T ) = [T 86T, 3) ds =Ry, )
K7
= Ty, %) = (x, Tey). o~
Thus (T)* = Twand T'is a *—;gﬁrésentation.

Remark: No non-zero elemept~of X is annihilated by every T
For, given 0 # x € X andy ¥ € X* such that (x, y) 0 we can
ﬁlnd a neighborhood V af the identity in G such that (Tgx_, Jf)
differs only slightly ﬁ;m’p (%, y)if s € V. If fis the characteristic

function of 7, thé}l\\(hx, ¥) =f(Tsx, ) ds differs only slighty
O\ v
from w(7) (%3335 and hence Ty is not zero.

32€. Thé}lfem. Conversely, a bounded representation T of
LI(G)\%'W'.& Banach space X arises in the above way if the wiion
of the\ranges of the operators T, f C LV, is dense in X. If X i5 8
e {%é‘?f space and T {5 a x-representation, then T is unitary.

N Proof, Let X, be the union of the ranges of all the operators
TAf €LY; X, is dense in X by hypothesis. et # run through
an approximate identity of L'. We know that u, s/ = (# %/)e ™
Jas and therefore | 7.7, — 7,1 — 0. Thus T. converges
strongly (that is, pointwise) on jY, to an operator Ul satisfying
UsTy = Ty, and since || 7,,, || < B|| ua ||y = B for every #, it fo-
lows that || U, | £ B and that U, is uniquely defined on the
whale of X (see 7F). Since U,,Ty = o, = Tup = Uty =

UsUoT; (e, U,y = UyU, on X,), we have Ua, = UslUs and
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the mapping ¢ — U, is therefore an anti-homomorphism. Fi-
nally, /. is a continuous function of & as an element of L,, and
therefore U, Ty = T, is a continuous function of . Thus U, is -
strongly continuous on X,, and hence on X. U'is an anti-homo-
morphism, and we set T, = U, to get a direct homomorphism.

It remains to be shown that (Tyx, y) = f ) (Tox, ) ds for

every ¥ € X, ¥y € X* and f € L'. We may clearly reserict x* &>
to any dense subset of X and f to L. Thus, it is sufficient 8y,

show that (77, 2, ¥) sz(.s)(Tsng, yydsforalf g & L., Now

if ¥ and y are fixed, the linear functional J(f) = (fo,'y)fsaﬁiiiaﬁes
LJA = B 2| || %]l £ll1s and is therefore a complex-valued
integral (the sum of its four variations). We theréforé have from
the [Fubini theorem that N

(Tyu gy %) = J [ [ r0et7 ds] . f;%;mg(f—lm ds
= f J(TsTex, y)‘ d: N

as desired. )

If X 1s a Hilbert space and N8 a s-representation, we want to
show that T, is unitary fKr'\*tav‘ery 5, Le, that (T)* = (T)) ' =
T But (T)* = T 2 (T)*Ty = T-Ty = T, forall f € L
& (w0 2 f — f ag,\"z}"i'uns through an approximate identity
S ey o fiF B8 w um > g% Now by dlr_ect computa-
tion g** = A( 795 and g % #,— = A(s~V)g® x #. Since we know
that g* & u —{%, the result follows.

32D. If weMtake X as the Banach space Z2(G) for some fixed
2 in {lyedand define the operator ¥y on X by Tyg = f#g for
every f ;Ll, g & I?, then we can check directly that the map-
ping f — Ty is a bounded representation of the algebra L'l(_G).
For instance, T;7h = fu{gsh) = (frg) vk = Tr.h giving
Tisg = TyT,. Moreover the inequality || f# gl = H Fllllglls
mplies that || 77, | < || #l1s so that the representation has the
bound 1

There is also an obvious group representation § —>_Ts defined
by T.f = foy, or [Tf1(H) = f~). The transformations T are
all isometries by the left invariance of Haar measure.
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This pair of representations is interconnected in exactly the
same way as in the above two theorems. Thus if g € I? and
Be Lt (1/p + 1/g = 1), then

JraTe i ds = [[ 70gts0h0) ds de = oz, .

If p =2, the transformations 7, are unitary by the left in-

variance of Haar measure: (7./, T.g) =ff(3_lf)g(~fflf) }f =
o\

f‘f(t)g(t) at = (f, . It follows from our general(theory that

the representation of L! is a s-representationOf course, this
fact can also be checked directly—the egdafity (fxg 4) =
(g, /* % &) can be computed directly fropinthe IFubini theorem
and the left invariance of the Haar integeal. These representa-
tions are called the (left) regular représentations of G and L'(G)
respectively. They are both faithfilMepresentations (one-to-one
mappings), for if s > ¢ we can chigose g to vanish outside a small
enough neighborhood of ¢ S'O:'th'at gg, = 0, giving In particulal‘
Tig # g in L¥(G), and if £.30 then we can choose # ¢ L' N L?
similarly so that | f & — fllz < €| f]|2» giving in particular
that Tfu =f* 1 O‘il’l\Lz(G)
&

Q) §33. QUOTIENT MEASURES

In this"\@sction we consider invariant measure on guotient
groupsyand, more generally, quotient spaces, and prove the Fu-
bini-like" theorem relating such quotient measures to the invark
antimeasures on the whole group and kernel subgroup. ’1jh13

x’i:ga:teltlal Is not needed for most of the subsequent discussion
nd since it gets fairly technical the reader may wish to omit i-
The method of procedure is taken quite directly from Weil [48]-
33A. Let H be a fixed closed subgroup of G, and let [ and

J be respectively the left invariant Haar integrals of G and H
It is understood that J(f) is the integral over A of the restric
ton of froH. Iff ¢ L(G), it follows from the uniform continwty
of f that the function f* defined by fllx) = J(fa) = Jofx) 18
continuous.  Also f'(xs) = f'(x) for every s € H by the left 10~
variance of J on H, so that /’ is constant on the left cosets of A
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Iff € Lg, then the related function F.on G/H defined by Fla(x))
= f{x) = J(fa) = J.f(xs) belongs to L. The value Fla(x)
= f/(x) can also be obtained as the integral of f over the coset
containing x with respect to the Haar measure of transplanted
to this coset. _

If H 1s a closed normal subgroup, then G/H is a group and has
a left invariant Haar integral K. K,J,f(x) is understood to be
K(F) where Fo(x)) = J.f(x#). Thisis equivalent to transferrings,
the domain of K to those continuous functions on G which, ate
constant on the cosets of 4 and each of which vanishes oif sethe
set of the form CH, where C is compact. If g is such a fanction,
then so is g, and the left invariance of X becomes simpl K (g) =
K(z,) for all y € G. Then K,J,f(xf) is a left invaridnt integral
on L(G), Kofofy () = Kofy(0) = Kef'(e) SKofofle), and
K J i f(xt) = EI(f). We are thus led to thq{quowing theorem.

Theorem. If f & ®H(G), then f. E‘&%CH) Jor every x and
Jfa) = Jufsty € @ NK). IF I, J and K'are suitably normalized,
then Ko [ f(xt) = I(f) for every f C@HG).

Proof. We have seen above, ﬁfl%ft the family of non-negative
fanctions for which the theorem'is true includes L™, with a suitable
normalization for J. If the(theorem holds for a sequence { f,} of
L-bounded functions o Qﬁ."" which converges monotonically to £,
then 7(f) = lim () = lim K [ fule) = K,(lim [ f,(x) =
KoJlim £, (xr) = ,K;fff(xt). Thus the family is Z-monotone and
hence equal to BRE(G), q.e.d. '

Corol]ary,\:}]:” S E€LYG), then f, € L{H) for almost all x,
J/bet) € LUK) and K, fixt) = 106).

33B~°j Wé return now to the case where H is closed but not
necesgarily normal. The mapping £ — F of L(G) into L(G/H)
defined above is clearly linear, and we now show that it is onto.

Lemma. Jr F ¢ LHG/H), then there exists f € LT(G) such
that Fla(x)) = J(f.).

Proof. Tet Bbea compact subset of G/H such that F € Lz,
let 4 be 5 compact subset of G such that e(4) = B and c?w.ose
b € LYG) such that 2 > 0 on 4. Notice that J(kz) > 0 if the
COset containing x intersects A, i.e., if ¥ € AH = o (B), and
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that Fla(x)) = 0 in (4HY = a~'(B’), an open set. Therefore,
g(x) = Fla(x)/J(ho) if J(h2) > 0 and gla) = 0 1f (%) = 0 de-
fines an everywhere continucus function. Also g{x} is constant
on the cosets of H. Therefore f = gh & L(G) and [ flxd) =
g(x) Jehlwt) = Fla(x)), q.e.d.

33C. If H is not normal, it is still true that every element
y € G defines a homeomorphism of G/H onto itself: a(x) —
alyx), or xH — yxH. If an integral X is invariant under all
these homeomorphisms, then the theorem of 33A goed Hirough
unchanged. More generally K may be relatively invgriant in the
sense that K is multiplied by a constant D(y) undeér the homeo-
morphism induced by y: K(F,) = D(y)K(F)y%here, of course,

Fyla(x) = Fla(yx)). The function D(y) iy edlled the modulus,
or the modm’arfunmon of K, and, like A, 15. seen to be continuous
and multiplicative. '\ 4

Theorel_n. If K is relatively mg)’éy‘zknt with modulus D, then
the funciional M(f) = K, ] DAK(xt) is (essentially) the Haar in-
tegral I(f), and all the condzc,rz@m of 33A follow.

Proof. M(f,) = K.J DGt f(yxt) = D(y— K] D f )]s
Ko J:D(et) flat) = M fYNThus M(f) isleftinvariant on L(G) and

equals J(f). The e}@eﬁsmns to &+ and to L! are the same as in
33A.

33D. Any contmuous homomorphism of G into the multipli
cative grou§ of the positive real numbers will be called 2 real
charactere\Examples are the modular functions A and D.

The(}rem In order that @ real character D be the modular June-
"Wi fO?' a ?‘-‘-’fa-’fwefy invariant measure K on the quotient space G/H,
“whtre H is a closed subgroup of G, with modular function it 43
necessary and sufficient that D(sy = A(s)/8(s) for all s € H.

Proof. If D is the modular function of K, then M(f y=1 )
as above and we have, for s ¢ H,

ADMF) = M(f) = K.JD(ed) flts™)
= D)KL T D{xts ™) flats ™)
= D(s) 3(s) K] uD(st) f(r) = D(s) 8(sIMF)-
Thus A(s) = D(s) 8(s) for every s € H.
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Now suppose, conversely, that D(x) is a real character such
that A(s) = D(s) 8(s) for every s € H, and define the functional
K on L(G/H) by K.(J(f2)) = I{D7Y). It follows from 33B
that this functional is defined on the whole of L(G/H) once we
have shown that the definition is unique, Le., that, if J(£,) = 0,
then /(D7) = 0. Butif J,f(xt) = 0 forall x and if g € LH(G),
then

= LJg() D™ () flxd) = [l 83 gl YD1 () f(x) -
= LD G JdoG g™} = LD 7)) gD

In order to prove that J(D7Y) = 0 it is therefore sufﬁe:lent to
choose ¢ € LH(G) so that J(g,) = Jig(x) = 1 for exery « for
which f(x) = 0. But if f € L4 and if a function m\hosen from
LHG/H) which has the value 1 on the compagt set a(A), then
the required function g is constructed by thekama of 33B.

It remains to check that the functlonaﬂ\K thus defined on
LHG/H) is relatively invariant with Das' its modular function:

K (fe) = LD7F,) <DOID )
= D()IBYY) = DYKJ(f).

This completes the proof of- i_{le theorem.

33E. Returning to thQ\case where H is normal we now see,
since G/H has an ipvariant integral, with modular function
D=1, that A(s) =@ for all s € H. Taking H to be the nor-
mal SUbgmuP on ‘Whlch A(#) = 1, it follows that § =1 and A is
unimodular. \IHe real character A is itself a homomorphlsm hav-
ing this gr Ou'ﬁ‘ as kernel, and the quotient group is therefore iso-
morphic 0 a mult1phcat1ve subgroup of the positive real num-
bers. .~ Ih’a sense, therefore, every locally compact group is al-
mos“c\mlmodular Another sease in which this is true has been
discussed in 30E.



Chapter VIl

LOCALLY COMPACT ABELIAN GROUPS

N
AS.Y
7NN *
\

The L! group algebra of a locally compact A]):elian group 1 a
commutative Banach algebra with an inyoliition, and much of
the general theory of Chapter V is directl®applicable. Thus we
can take over the Bochner and Planc é}%’theorems whenever 1t
seems desirable, and we can investi¢éle questions of ideal theory
such as the Wiener Tauberian the:cn"em. We shall be especially
concerned with reorienting thjsf"t:l‘ieory with respect to the char-
acter function (the kernel fimction of the Fourier transform),
a-nd much of our discuqs‘ioi'i'{vill center around topological ques-
tions. ~\

The character flsQ'étfon is discussed and the character group
defined in § 34 apd various standard examples are given in § 35
§ 36 15 devotedto positivity, and includes the Bochner, Planch-
erel, and Stone theorems, A more miscellaneous set of theorems
is gath&{‘f@ffogether in § 37, such as the Pontriagin duality theo-
rem, the "Wiener Tauberian theorem, and a simple form of f'he
P‘?i{S‘fiTl summation formula. The chapter concludes in §38 with
\"a:{bnef discussion of compact Abelian groups; the general theory

¥ compact groups is given in the next chapter.

§34. THE CHARACTER GROUP

We know that each regular maximal ideal M in L! is the kernel
of a homomorphismf 'ﬁf(M) of L' onto the complex numbets
(see 23A, B) and that this homomorphism, as an element of the
conjugate space (LY)* of L, is uniquely represented by 2 fup&

: 134
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tlon ey € L%, f(M) =ff(x)on(x) dx (see 15C, D). We shall

see below that ey 1s (equivalent to) a continuous function,
| axr() | = 1 and apr(y) = anr{®)au(y). Thus ays is a4 continu-
ous homomorphism of G into the multiplicative group of com-
plex numbers of absolute value one; such a function is called a
character of G. Moreover, every character arises in the above
way. Thus the space 9 of regular maximal ideals of L' is now_
identified with the set G of all the characters of G. Through, this
identification we know that G, in the weak topology of ()=
(LY)*, is locally compact. And it follows rather easily, that G is
a locally compact group, multiplication being the poiitwise mul-
tiplication of functions, The domain of the fugqiﬁnf will be
shifted from 9% to G through the above identififation, and, 2s a
function on G, f is now the classical Fourier transform of f.
- . . N,
We proceed to fill in the details. R

34A. Theorem. Given a fixed M €X, let f € L' be such that

JM) 5 0. Then the function car defined by onr(x) = f(M) /(M)

15 a character. It is independentQf f, uniformly continuous, and

continmous in the fwo variables wand M if the parameter M is also

varied. If u runs throughlan approximate identity, then (M)
converges uniforml ).
ges uniformly fo gq(x‘)

Proof. That ay ishuniformly continuous follows from the in-
equality | fx(M):*;.‘J?y(M) | < {| fo — F4||: and the fact that f; as
an element of %1s a uniformly continuous function of » (30C).
The inequaliéy)| /M) — /(M) | 5 || fo = furlls +] /D) =
Sl M) | Sb‘c’)}va that 7,(M) is continuous in the two variables x and
M tgeﬁhér, and the same holds for as(x) upon dividing by

i

)

The remaining properties of ay are contained in the equation

JM)2,(M) = [.(MDE(M)

(which comes from fug,=forg). Thus fo/f = £./8 proving
that « is independent of /. Taking g = f, and dividing by (£
We see that ay(yx) = cnr(¥)one(x). Thus an is 2 continuous ho-
momorphism of G into the non-zero complex numbers. ?f
arlxg) | > 1, then | aar(wo®) | = | conr(o) |* — . But ax 18
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bounded; therefore || aar {le = 1. Then | anr 7' (x) | = | ane(x ™) |
< 1, so that | aar(x) | = 1. Thus ay is a character.

Finally, taking g = u, we get #,(M) = kay(x), where k =
#(M), and since #(M)} — 1 as « runs through an approximate
identity (| & —flle £ || #xf =/ — 0) it follows that

#,(M) converges uniformly to en(x).

34B. Theorem. The mapping M — oy is a one-to-one ap-
ping of I onto the set of all characters of G, and .

N

Jon) = [ fwenley ds. O

W
7N
L

Proof. Wf: first derive the formula. Given'ﬂ?{', the homomor-
phism f — /(M) is in particular a linear fifuetional on L1, and

therefore there exists & € L® such that /(M) =ff(x)@ dx.
Then Q-

f F)am(e) dx = lim, f:;s(}j'u,-l(;w) dx
— i, ([ fute=y)als) ds dy

2\Y
8= limy (72 0)al) 2

<)

07 = [ret) v = s,

R s
q.e.d. \.@vpartlcular, M is determined by the character o, 80
tha‘gi,k}e mapping M — s is one-to-one.

""iﬂt'a is any character, then the linear functional ff(x)&_(x) dx 1s
multiplicative:

J 2060305 e = ([ s91gs atamia ey
= f f fwalx)g(y)aly) dx dy

= [ 1ol e [2(59a3) .
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It is therefore 2 homomorphism, and if M is its kernel the equa-
tion ff(x)cu(x) dx =ff(x)aM(x) dx shows that ¢ = ayy.

This theorem permits us to identify the set G of all the charac-
ters on G with the space 9 of regular maximal ideals of L{(G)
(which has already been identified with, and used interchangeably
with, the subset of (L')* consisting of non-trivial homemor-
phisms). Generally from now on the domain of 7 will be takén
to be G. Also we shall use the notation {x, &) for the valtig of
the character « at the group element x, so that the Fourjer\trins-
form formula is now written: \*

27%G
L 3

fe) = [ @y ds. (KO

34C. The topology of G is that of uniform gbubergence on compact
sets of G. That is, if C is a compact subetsfG, ¢ > 0 and ap € G,
then the set of characters U(C, €, ap) = ‘{}25 | (%, @) — (x, ao) | <e
Jor all x € C} is open, and the family of all such open sets is a

basis for the topology of G. o ”

Proof. That U(C, ¢, ap) ’is"open follows at once from SF.
Moreover the intersectionlof two such neighborhoods of g in-
cludes a third: U(C; 46, min (e, &), @0) C U(Cy, €1, &) N
U(Cs, €3, ap). Tt ightheérefore sufficient to show that any neigh-
borhood N of g Belonging to the usual sub-basis for the weak
topology includés’one of the above kind. Now N is of the form -
N = {a: | @)~ fao) | < 8} for somef € L' and > 0. IfC

18 chosenjs:o\thatf | F1 < 8/4, ¢ = 8/2|] fl|: and | (2 @) — (%,
N o

an)\‘[\;{'e on C, then | Flo) — Hao) | éfl fla — a) | éj; +_£,»
< (| £ /20 £l + 2(6/4) = 5. Thatis, UG, & @) © 4,
g.e.d.

34D. Theorem. The pointwise product of two rﬁd?‘f‘fa‘er.f is a
character, and with this definition of multiplication G is a locally
compact Abelian group.

Proof. 1t is obvious that the product of two characters is &
character. The constant 1 is a character and is the identity under
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multiplication. For any character «, the function &= is a char-
acter, and is the group inverse of «. These facts are evident, and
there remains only the proof that multiplication is continuous.
But if C is a compact subset of G, and € > 0, then

|053—0-’0130|éla—aol'|ﬁn|+|ﬂ|‘|5'—3u|<f

onCifla—ay| < e2onCand|8 — | < ¢/2 0nC. Itfol-
lows from 34C that multiplication is continuous. N
34E. Remark: It may seem to the reader that it wqnld have

been more natural td define ey so that /(M) =ffCXJ&M(x) dx

instead of /(M) =ff(x)aM(x) dx. The only jgﬁfiﬁc.ation for our

choice which can be given now is that it §€a¥s closer to the for-
malism of the scalar product and convelafion; we have defined
JOM) as (f, aw) = [f % am)(e). Later’we shall see that it leads
to the conventional Fourier transfolh on the additive group of
the reals, whereas the other choiee leads to the conventional in-
verse Fourler transform. Natice that the character which we as-
sign to a regular maximal ideal M is the inverse of the character
assigned by the other fo\rﬁula.
O
&
\ §35. EXAMPLES

In calculating’the character group for specific simple groups
we have tw possible methods of procedure. First, a character
can be detérmined from the homomorphism of the group algebra
assogigted with it, and this method was used in working out the
exantples of §23. The second, and more natural, method in the
present context, is to proceed directly from the definition of a
character as a continuous homomorphism of G onto 7. The di-
rect verification of the correct topology for G takes perhaps 2
little longer because the theorem of 5G on the equivalence of 2
weak topology with a given topology does not now intervent

but this is 2 minor objection at worst.

35A. Theorem. The character group of a direct product G X Gz
of two locally compact Abelian groups is (isomorphic and homeo
morphic 10} the direct product Gy X Gy of their character groups-
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Proof. The algebraic isomorphism is almost trivial. Any
character @ on G, X Gj s the product of its restrictions to G
and Ga, a({®1, x2)) = a((¥1, e2))a{{e1, x2)), and these restrictions
are characters on Gy and G, respectively. Conversely the func-
tion a({x1, ¥2}) = eq{x)as(xs) defined as the product of two
characters on G, and G, respectively is evidently a character on
G; X G3. The one-to-one correspondence a < {a1, ;) thus es-
tablished between (G; X G2)* and G, X G, is clearly an ige>
motphism. Kot

Let C be a compact subset of G containing ¢ = {¢,, egrnand of
the form €= C; X Co. Tf |a —a®] < e on C, t}lc';p"(taking
%z = ¢3) | oy — a;°| < eon C, and, similarly, | @z 20" | < eon
Cy. Conversely if | @y — 04° | < eon € and | ag}*—\ @’ | < eon
Cy, then |a — | = | ogas — ;%? | < 2eden” €. It follows
from 34C that the topology of (Gy X Gy)*ds'the Cartesian prod-
uct topology of G; X G,. This fact alsgfollows directly from the
next theorem.

35B. Theorem. If H is a c:lo,rga”:}zeégroup of a locally compact
Abelian group G, ihen the characker group of the guotient group G/H
is (isomorphic and homeomoxphic ta) the subgroup of G consisting
of those characters on G za{:&%ﬁﬁ are constant on H and ils cosels.

Proof. If §is a chafagter on G/H, then a(x) = B(Hx) is contin-
uous on G and a(ve) = B(Hryxs) = B(HxHza) = B(Hx1)B(Hxs)
= a(x))a(xs), so\fHat a(x) is a character on G. Conversely, if
aly) is a cha'rgatér on G which is constant on H, and therefore on
each coset.0f#, the function g defined on G/H by B(Hx) = alx)
is a chasdcter. _

We ’:3%'1‘11 have to show that the topology induced in this sub-
groyp is the correct topology for the character group'of G/ H.
We know that € = {Hx;x - F} 1s compact in G/H if Fisa
compact subset of G, and that every compact subset of G/H
arises in this way (see 28C). Then | 8(x) — Bol#) |-< ¢ for all &
i Cif and only if | f(Hx) — Bo(Hx) | < ¢ for all » in F, and the
tesult follows from 34C. :

35C. Theorem. Every character o(x) on the ada’z’{iﬂ.‘:’ group R
o the real numbers is of the form alx) = €%, ﬁ”d_R is isomorphsc
and homeomorphic to R under the corvespondence ¢ <> 3.
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Proof. Every continuous solution of the equation a(x + y) =
a(x)a(y) is of the form a{x) = ¢, and, since « i1s bounded, «
must be pure imaginary. Thus a(x) = %%, for some real y.
Conversely, every real number y defines the character ¢%, and
this one-to-one correspondence between R and R is an isomor-
phism by the law of exponents. The set of characters a such
that | a(x) — 1| < ¢ on [—n, #] is a neighborhood of the iden-
tity character, and the set of such neighborhoods is a neighbor-
hood basis around the identity. But | ¢¥* — 1 | < ¢ on'lsn, 7]
if and only if y is in the open interval (—38, §), (where & =
(2/n) arc sin (¢/2), so that the mapping R < R..i“s\bontinuous
both ways at the origin, and therefore everywhepe:

35D. Theorem. Eackh character on R/T z'jw'af the form ™,

and (R/I)" is isomorphic and }zomeomorpéic to I under the corre-
spondence e o g, K¢

Proof. This follows at once from>35B and C; the character
¢ has the constant value 1 on thietintegers if and only if y =27
for some integer m, and the, discrete subgroup {27m} of R is, of
course, isomorphic (and trivially homeomorphic) to 1.

35E. Theorem. Each'character on I is of the form &*™=", where

O0=w<,and s dsomorphic and homeomorphic to R/T under
the correspondencd 87" « x,

Proof. If @) is a character and a(1) = ¢ %, then o(n) =
e*", Itds‘elear that every such y defines a character, anAd that
the mapping y — %" is a homomorphism of R onto /, with
kerngh\/. Thus 7 is isomorphic to R/7. The set {y: 0=y <1
an\d\t T~ <gn=1,-., N} is a basic neighborhood of
evin I, and is easily seen to be an open interval about 0 in R/1.
Conversely, any open interval about 0 in R/I is such a set (with
?V=1 and ¢ to be determined), and the two topologies are
1dentical,

35F. Fach of the three groups R, R/J, and I is thus (iso-
morphic and homeomorphic to) its own second character group-
Th?se results are special cases of the Pontriagin duality theoreim,
which asserts that every locally compact Abelian group is its own
second character group, and which we shall prove later 1n §37'
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The TFourier transform formula becomes for these groups the
well-known formulas

J) = [ fsdeoe as

oy = €, = f F(x)e2rine gy

j?(-X') sz(n)e—2w'£xn dn = Ziwcﬂg—2rinz. N\
I

N

2 A\AN
The fact that the Fourier transform is initially a mapping of

LY(G) into €(G) reduces here to the fact that each of the above
integrals is absolutely convergent if / € L' (whigh, in the last
case, means ».~.|C,| < «), and f is continudus and vanishes
at infinity (in the first two cases). The cargesponding formulas
for multiple Fourier series, multiple Fogrie}t’ransforms, and mix-
tures of these, can be written down by wirtue of 35A. The du-
ality theorem can also be directly Werified for these product
groups. R\

«ay

§36. THE BOCHNER®AND PLANCHEREL THEOREMS

36A. We shall now apply to the group algebra L1(G) the gen-
eral commutative B%&ch algebra theory of § 25 and § 26, keep-
ing in mind the estratinformation that the space G of charaf:ters
(maximal ideal s\‘p%nfe of LY(G), space of homomorphisms) is itself
a locally Com{{aict group, with its own Haar measure and its own
group algebra:

We sgart with positivity. We have already seen in 31G that
& posifive linear functional on L'(G) is extendable if and only if
igdgicbntinuous. The Bochner theorem of 26I can thus be taken
tovrefer to positive definite functions p € L”. Moreover, the
hypothesis in that theorem that f** = f*7 is now automatically

met, for **(a) = [y @) dt = [ Fle)e @) ds = (Jr
mdx)L = {(f(&))~. Finally, if g, is the measure on G asso-
ciated with the positive definite function p € L*(G), we have

J 6155 as = [ o) ot = [ 169 e din(e) | d
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for all f & L', implying that p(x) :f(x, ) dup{a) for almost all

x. Any function p defined this way 1s positive definite, for it
clearly belongs to L®, and

st ) = [[ U 279G, @) de dinted = [1£17dus 2 0

The Bochner theorem can therefore be reformulated in the gres-
ent context as follows: O

Theorem. The formula O

-_
2N
< R

26) = [ dule)

AN

Sets up a norm preserving isomorphism betweerNhe convex set of all
Jinite positive Baire measures p on G and fb?‘mmw set of all posi-
tive definite functions p < L*(G). AN

X }

Corollary. Every positive defin ':efiéﬁcrz'on p € LHG) is (essen-

~

tally) uniformly comtinuous. &\

Proof. This is because the'measure u, is mostly confined to a
compact set  and the character function (x, &) is continuous in
% uniformly over all @¢&’C. Given ¢ we choose a compact subset
C of G such that pp.(}i") < ¢/4 (C’ being the complement of €},
and then find a,\’ﬁeighborhood V of the identity in G such that

l (es @) — (;’Cxﬁé:ﬁ!) | < ¢/2u,(C) if x4, € ¥ and « € C (by 5F
again). Then

&
NN ]f[(xl, @) — (%3, )] dupla) | gLJFLé 5_}_%

Seben wye,™1 € V. Thus f(x, a) dyy(e) is uniformly continuous.

13:61?-- Let @ be the class of positive definite functions. Because
LXG) has an approximate identity, it follows that the vector
space IL* N &) generated by I} 0 @ is dense in L'. For L' N L7
s densein L', and if f € L} N L* and u runs through an approxi-
mate identity (also chosen from L' N L), then f  is at 0n¢e
a1 approxXimation to f and a linear combination of four positive

definite functions like (f + u) % (f + #)*. By exactly the same
argument [L1 N @] is dense in 7.2(G).
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The Bochner theorem above and the abstract Plancherel-like
theorem of 26 ] now lead us to the following L'inversion theorem.

Theorem. If f € (L' N @, then f € L' and

163 = [, @) de

for almost all x, where da is the Haar measure of G suitably nor-<

malized. N
7 \"\

Proof. Let ¢ be the positive functional defined on thé ideal
L of uniformly continuous functions of L! by o(f) =¢(8). We
have observed earlier (31G) that a function p € LY ¢ 1s posi-
tive definite with respect to ¢ in the sense of the Plancherel-type
theorem of 26, and we can therefore conclude ffom that theorem
that there exists a unique positive Baire “n{%:'a}urc m on G such

that # < L*(m) and (f, ) =fff§ dm .wljéh:everp e L' N @®and

f €L The formula p(x) = f (2 )(a) dm(a) is the same as

that of the Bochner theorem in 36A. We have left only to prove
that  is the Haar measuriaé[f G. Butif p € L' N @, then a di-
rect check shows that ’R&f)(x, ap) € I} N @ for any character
g, and we have O

J 5@ amigh= () = p(0e, @) = [[Blae) dmla),

where we h.ﬁ%" used the directly verifiable fact that B, is the
Fourier ransform of pa,. Since the algebra generated by'}f.1 ne
1s degSe'in ') and the transforms p are therefore dense in e(G),
the abbye equation shows m to be translation invariant and
therefore the Haar measure of G. )

Remark: If T is the Fourier transformation f — f from L1(G)

into ¢(G), then the mapping u — 2 defined by p(») =f(x, o) du(e)
from the space of all bounded complex-valued Baire r{leasurfs on
G (&G into Z2(G) (= L}(G)*) is the adjoint mapping T*. It
ml:St l?e remembered, however, that the identification of L* with
(LY* is taken to be a conjugate-linear mapping in order that the
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ordinary scalar product formula can be used: P(f) = ff(x)p—(w:i dx,

where P and p are corresponding elements of (L)* and L*. The
same remark holds for the identification of €(G)* with the space
of bounded Baire measures. It is this twist which is responsible
for the factor (#, ) in the integrand of 7* whereas (¥, a) occurs
in that of T. )

The inversion theorem above shows that 7 = 77! when 7 is
restricted to [L' N ®]. However the function f occurdng’in the
range of T is taken as an element of €(G), whereas thi¢)same func-
tion as an element of the domain of T* is considered as a measure
( /(a) da) on G. This discrepancy vanishes when the Z? norms
are used; T then turns out to be a unitdfy ‘mapping and the
equation T* = T is proper. This is the'point of the Plancherel
theorem, both in its general form (26]\)\’3}1(1 its group form (36D).

36C. It is evident that the invgréion formula must be multi-
plied by a constant if a different™Haar measure is used on G;
that is, the inversion formulazfpiéks out a unique Haar measure
on G in terms of the given .H‘azir measure on G. In specific cases
the correct determination of m on G in terms of x on G is an in-
teresting and non—trjv‘jé.] problem. A possible procedure is to
calculate explicith the transform and inverse transform of some
particular, easily“iandled function.

By way of illustration consider the group R and the function
fx) = e 27 If in the formula

:“\s.

& e[ e

oY . —

e differentiate with respect to y and then integrate by parss
we find that z ?f(_y) satisfies the differential equation 4% =
—uy dy, so that /(y) = Ce™*2. In order to determine C We ob-
serve that f(0) = C = [ ¢ dv. Then

02 =r re—-(zﬂ—by!)/z dx d}' zf%fwe_ﬁ/zrdf,da — 211-,
Y o Yo

and € = (2x)%. Therefore if we take Haar measure on K t© b;
- dx/(2m)* instead of dx the function ¢~/ transforms into itself
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Now we must choose Haar measure Cdy on R = R so that the
inverse formula :
) teal
6,—2:5/2 =f f__y2/28a'yxc a’(y

f—)

holds. Since this equation is real it is the same as its complex
conjugate above and C must be 1/{(2m)*%, Thusif f(x} € [L' N P),
then /(y) € [L' N P), where

. 1 . N
f(}’) = (Zw)%ﬁf(x)f“wzdx ’.'\“’\

_ 1
DE

both integrals being absolutely convergent. Thié, of course, i8
the classical choice for the Haar measures, 6nRand R=R Tt
is easy to see that all other pairs of asgociated measures. are of
the form (A dx/(27)%, dy/A27)%). O

The proper pairing of measure§*for compact and discrete
groups such as R/f and I will faﬂbﬁv from 38B.

36D. The Plancherel theoféin. The Fourier iransformation
[ = Tf = F preserves scatar products when confined to [L' 0 6],
and its L2 closure is a #apitary mapping of LA(G) onto L2(G).

Proof. The heart)of the Planchere! theorem has already been
established in 26F and restated implicitly in the L' inversion
theorem above,“namely, that the restriction to (Lt N G’]Aof the
Foutier trangfarmation f ~ Tf = f satisfies (Tf, Tp) = (/> §) =
o(f % )81/, p) and is therefore an isometry when the L? norms
are ngéd! ' -

The remainder of the theorem is that 7 has a unique extension
t a unitary mapping of the whole of L*(G) onto the whole of
L¥G). That [L' N ] is dense in 2 has been remarked earheré
1t depends on the fact that convolutions f + g with £, £ € L 3 L

elong to [L* N ®] and are dense in L2 Thus 7 has 2 umque
eXtension to the whole of L2(G), and the extended range Is 2
COI:l‘lp]ete (and hence closed) subspace of LHG). We will [Je
ﬁl;ui};ed therefore if we can prove that the range of T is dense 1n

Q!

and

e | Fore=ars

AN
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Now if F € L' N LB, then f = T*F) € L*G). For fis
bounded and uniformly continuous, and if g € L' N L*G), then
@A =1@F | | Fllsl| £llz = [ #]lo-|| & ||z, proving that
FeLAG and || flls = || Flls. Ifalso H € L' N L¥G), then
B LG and hf = THH « F) € [L* 0 ¢]. Thus H « F = T{f)
by the inversion theorem, and since such convolutions 7/ & F are
dense in L2(G) we are finished,

We have also, as a corollary of the above method of proofy.the
following:

Corollary. LYG) is semi-simple and rvegular. ~ ~

Proof. Iff ¢ L'and g € L2 then fxg & L? and' T(fxg) =
J&. If f # 0, the convolution operator U defiéd on L*G) by
£ is not zero (32C) and therefore the operdtdy on L2(G) defined
by multiplication by f is not zero. That8, if /= 0 in LYG),
then /  0in €(C), and L}(G) is semi-siiple.

The reader is reminded that L} {G)ie'regular if for every closed
set F < G and every point a & X tHere exists f € L' such that
F=0o0n Fand fle) = 0. Weﬁijréve directly the stronger assef-
tion about local identities in'f.* (25C), namely, that if F and U
are subsets of G such that /' is compact, U is open and F' ¢ U,
then there exists f € ENG) such that f=1on Fand /= 0 on
U’. To see this W’s\%ﬁoose a symmetric Bailre neighborhood vV
of the identity in('G such that 7°F c U and let # and % be re-
spectively théscHaracteristic functions of 7 and a Baire open set
between VF:\énd V2F. Then the convolution § /4 is identically
equal to\'ﬁ(m on F and to zero outside of U. Since E*f’ =
T(g};)%f'the desired function is f = gh/m(¥).
m3€zE We conclude this section by translating the representa-

<ton” theorem of 26F to the group setdng. If 7' (s — 75) is any
unitary representation of an Abelian group by unitary eransfor-
mations on a Hilbert space A, the considerations of §32 tell us
that T'is completely equivalent to a x-representation of the group
algebra L'(G). Then, as in 26F, T can be “transferred” to .the
algebra of transforms £ and then extended to a 4-representation
of the algebra of all bounded Baire functions on G. The trilinear
fanctional (4, x, y) = (T, ), for fixed x and y, is 2 hounded
complex-valued integral on e(G), and satisfies {(Fg % J )=
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IF, Ty, y) for F & e(G) and ¢ € LNG). Thus (TsTex, y) =
(Toty ) = I((s7% a)fe), 2, 9) = I(5, Tgx,5). The operator
T, corresponding to the characteristic function ¢z of the set £
is a projection, designated Pg, and (Prx, y) is the complex-valued .
measure corresponding to the above integral. (The correspond-
ence E — Pg is called a projection-valued measure.) The above
equation can therefore be written

(T 3) = [ @) dPa ), \

A,

Q"

where we have set » = Tyx. Since such clements are dehse in
H, this restriction on # can be dropped. We can sunifharize this
result, using the symbolic integral of spectral thgq‘y,’ as follows:

Stone's theorem. If T is a unitary represeiygiion of the locally
compact Abelian group G by unitary transfopipations on a Hilbert
space H, then there exists a projection-valged-measure Py on G such
that O\

T. =1, .n'sz){}fig’a.

The projections Py form th&¥so-called spectral family of the
commutative family of opefators 7.. Each such projection de- -
fines a reduction of the, tepresentation T into the direct sum of
TPg operating on th@}s}nge of Pr and T(1 — Pg) = TPz oper-
ating on its orthogend] complement in A. The further a._na:ly.sm
of the reducibility “of 7T depends directly on the multiplicity
theory of the.'féi;r.\n“ﬂy of projections Pg and is beyond the reach of
this book. ‘.§

AN § 37. MISCELLANEOUS THEOREMS

ihfs ‘section contains the Tauberian theorem and its generali-
Z)at.lonS) the Pontriagin duality theorem, and a simple case of the

01sson summation formula. .

37A. The Tauberian theorem, as proved in 25D, applies to
any regular commutative Banach algebra, and hence (see 36D,
corollary) to the L'group algebra of an Abelian locally compact
8'0up. The extra condition of the theorem, that the elements
Whose Fourier transforms vanish off compact sets are dense 1n
the algeby a, is always satisfied in this case. For L is dense in
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72* and hence the elements of L? whose transforms lie in £ are
dense in L2 Since every function of L' is a product of functions
in 12, it follows via the Schwarz inequality that the functions of
L whose transforms lie in 7. are dense in L'. We can now restate
the Tauberian theorem.

Theorem. If G is a locally compact Abelian group, then every
proper closed ideal of L*(G) is included in a regular maximal z't@z!.

Corollary 1. If f € L' is suck that f never vanishes, then the

translates of f generate L, N\

Proof. By hypothesis f lies in no regular max;mal ideal. The
closed subspace generated by the translates of (Fis (by 31F) 2
closed ideal, and therefore by the theorem ig¥the whole of L.

Corollary 2. (The generalized Wiengr\Tauberian theorem.)
Let G be any locally compact Abelian g?nup which is not compact.
Let b € L be such that k never vanisher and let g < L* be suck that
the continuous function k & g vanishes at infinity. Then [+ g var-
ishes at infinity for every f & LN

Proof. The set I of functions f € L' such that fxg Vani§hes
at infinity is clearly a.Jinear subspace, and 7 is invariant since
foxg = (f+g), vanishes at infinity if /= g does.

I 1s also closedy, For if f €T and € is given, we can choose
h € 1 such tha@lf f — 4|l < ¢/(2|| £]]), and we can choose 2
compact set,&5uch that | (% « g)(x) | < ¢/2 outside of (. Since
|G D@ x| = |[f =4l glle < ¢/2 it follows
that | {(F% g)(%) | < ¢ outside of €. Therefore f g vanishes at
infinity and f € 7.

\:;Therefore (by 31F again) 7 is a closed ideal, and since it con-
dins k it is included in no regular maximal ideal. It follows
from the theorem that 7 = I,

~ Corollary 3. (The Wiener Tauberian theorem.) [/ € LI(R{)]
is such that k never vanishes and g € L® is such that (k% o= 1
as x =+, then (fag)(x) - 0 as x — +o for "-’WryfeL.

., . _ o

This is not quite a special case of the above corollary sice 11'
concerns being zero at infinity only in one direction. HOWEY®
the proof is the same.
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37B. The Tauberian theorem in the genera! form of the theo-
rem of 37A asserts that a closed ideal is the kernel of its hull if
its hull i1s empty, and is thus a positive solution to the general
problem of determining under what conditions a closed ideal in
a group algebra L'(G) is equal to the kernel of its hull. That the
answer can be negative was shown by Schwartz (C. R. Acad. Sci.
Parig 227, 424-426 (1948)), who gave a counter example in the
case where G is the additive group of Euclidean 3-space. The,
positive theorem also holds for one-point hulls. This was proved
for the real line by Segal [44] and extended, by means of Sttuc-
ture theory, to general locally compact Abelian groups by Kap-
lansky [27]. Helson has given a proof of the generalizéd theorem
which is independent of structural considerations {24]. In the
proof below we use a function which has beensdiscussed both by
Helson and by Reiter (Reiter’s paper is uppuyblished at the time
of writing) to give a direct proof that &l condition of Ditkin
(25F) is valid in the L! algebra of apyMocally compact Abelian
group. This immediately implies (by 25F) the strongest known
positive theorem. N :

Lemma. Jf 4 regular, .f,;ﬂ‘s;i;}émpfe Banach algebra A4 has an
approximate identity and &ad the property (of Wiener's theorem)
that elements x such r}z%\ﬁ.hm compact support are dense in A, then

salisfies the condipion™D at infinity.

Proof. This léni;na has content only if 9 is not compact.
We must shqyit'hat for every » and e there exists ¥ such that #
has compactsupport and || xy — x || < e Because 4 has an
approximats identity there exists # such that || v — = || < ¢/2,
and then, by the Wiener condition, there exists y such that § has
“afnpact support and |y —al| < e/2||x]]. Then || 2y — o ||
SF2and [ xy — x || < ¢, que.d.

Corollary. 7t then follows that, if I is 4 closed ideal with a com-

Pact hull, then I contains every element x such that hull (I) C int
(}f-k’!’f (x))_

Proof. It follows from the theorem that there exists y such
;at 3 has compact support and || xy —# | < e But then
.y €1 by 25D, and since 7 is closed we have ¥ € 1.
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37C. In order to establish the condition D at finite points we
introduce the function mentioned above.

Let U be any symmetric Baire neighborhood of the identity
in G such that m(U) < », where m is the Haar measure of G.
Let 7 be any second such neighborhood whose closure is com-
pact and included in U, and taken large enough in U so that
m(UY/m(¥V) < 2. Let # and o be the characteristic functions of
U and ¥ respectively, and let # and » be their inverse Fgater
transforms in L2(G). Then the function j = ue/m(7) bglohgs to
LYG), and [[7{l < || ullofl ollo/m(Fy = || 4 |l & J80m07) =
[m(U)/m(V)]* < 2. Moreover if ## is a neighborhodd of such

that P < Uthenj = # « 3/m(V) = (1;‘m(V));f ()3 (e™6) de
= lifgew. O
Lemma. Given any compact set C @XF and any e > O thore

exists a function j < L' such that j =} in some neighborhood of
the identity ¢ in G, || j ||, < 2, and [JO= j. i, < e for every x € L.

Proof. We define j as abeii®, taking for U any symmetric
Baire open subset of the open ‘set {a: |1 — (x, e) | < ¢/4 for all
¥ € C} (see 5F). Sincefoe j, = [u(v — v.) + va{tt — u)l/mF)
and since, with the ab'jg)}e choice of U, || u — u, ||s* = f | #(e)(]

— (5, @) |2 da Sm(U) lubuey | 1 — (x, o) 2 < m(UD(e/4 if

¥ € € (and sitiilarly for || v — v, ||,), we have | j = J= il £
Q[m(U)m(mkﬁ’eﬂm(V) < ¢ for every x € €, q.e.d-

) " . T
C°‘?§‘Y- I f € LNG) and J(8) = 0 then fxj — 0as Ude
creasgsiinrough the symmetric Baire neighborhoods of t.

~N . .
".*}Ptoof. Given § we choose € in the above lemma to be sy

metric and satisfying J;[f| < §/8, and set € = 5/2 f Il Then
f 50 = [fa) dn = [fagiety = 00 ds B

127l s i i = hoae = [+, < sl
(3/8)4 = ». ¢ 7 _

This corollary leads at once to the condition D at the jdentity
& 1t then follows for other points upon translating.
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Theorem. There exists a uniformly bounded directed set of
Junctions v € LYG) such that =0 in a neighborhood of ¢ and
such that f « v — f for every f € LNG) such that f(8) = 0.

Proof. l.et z run through an approximate identity and set
v=u—jwu. Then {|v], =23 and =4 —47=0 in the
neighborhood of ¢ where 7 = 1. Also || f~favii S || f=Sfeulls
£ Ll [ = 0, qed.

It follows that Silov’s theorem (25F) is valid for the group.ale\
gebras of locally compact Abelian groups. We restate the theo-
rem slightly, S

Theorem. Lt T be a closed ideal in LXG) and f a'fanction of
LNG) such that F(o) = 0 whenever o is @ character, ayihich every
function of T vanishes; that is, hull (I) < hull (Boer f € kAD).
Suppose furthermore that the part of the bounddry of hull (f) which
15 included in huil (I) includes no mn-zera.,g@‘ek! set. Thenf € L.

Corollary. 17 I is a closed ideal in Ll (C‘) whose kull is discrete
(it consists entirely of isolated po;}yf&) then I = k(&(D)).

37D. We have seen that the Ié;]falracter function (x, a), ¥ € G,
@ € G, is continuous in » and & together. Also that (%, aen) =
(¥, a)(x, ey). Therefores féverY element x in G defines a charac-
ter on G, and the mapgurg of G into G thus defined is clearly an
algebraic homomorphism. The Pontriagin duality theorem'as—
serts that this mafping is an isomorphism and 2 homeomorphism
onto G, so thapyGcan be identified with G. .

By using &he” considerable analytic apparatus available to us
we can defliice a short proof of this theorem. LA A

The.gpace [L' n ®] corresponds exactly to the space [f: n @]
unden'the Fourier transform and forms an algebra 4 of un-lformly
Cor}tinuous functions vanishing at infinity and separating the
ponts of G (since it includes the subalgebra generated by
(I n L3« (I' n L2); see 36A, B). The weak topology de-
termined on G by A is therefore the given thOlOgy of E; (5G).

Ut as the Fourier transform of a function / € [Z* N &l eac'h
such f has g unique extension to the whole of G, anc-l under this
extension [L1 1) o] is isomorphic to [L* N #}(G). Since the to-
Pology of G is the weak topology defined by these extended func-
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tions, it follows that G is imbedded in G with the relative topology
it acquires from G, and that G is dense in G. (Otherwise we could
construct a nonzero convolution of two functions of (L N L3(G)
which vanishes identically on G, contradicting the isomorphic ex-

tension.) Since the subsets of G and G on which | /| > ¢> 0
have compact closures in both topologies and one is dense in the
other, we can conclude that their closures are identical. There-
fore G = G, finishing the proof of the duality theorem. N\
37E. The Poisson summation formula. Let f be 2 fudction
on R = (—w, ) and let F be its Fourier transform.s 6t o be
any positive number and let 8 = 2x/a. Then mder suitable

conditions on f it can be shown that 7\
_ AN
Va T 2. fna) = Ve X2 2B0s),
which is the Potsson formula. N

The formal proof proceeds as follows. The function g(x) =
2. f(# + na} is periodic and hénpe can be considered to be
defined on the reals mod «. ~Thé characters of this quotient
group are the functions ¢™=288h == (im8> and its character group,

asha subgroup of R = R gseéf35B), is the discrete group {»8} 2o
Then . Vi

~\
1 = )
G(mpB) = - J; 8'?‘7'{&(2‘(@ de = % Do e fae_i”“?xf(x + na) dx

0

12” I i LY Fef(x) dx
= = nhwfm ] f(x)dx=—f £mPe(x

& a oy

\\\/Q—w 8
AN T F(mﬁ)=\[;1:(m6)-

\_E;ut by the inversion theorem g(x) = 3.=.. ¢™*G(mf)- There-
ore

27 flna) = g(0) = 327 G(mp) = \/g ENAC
giving the Poisson formula.

_ We now present a proof in the general situation, with the func-
tion f severely enough restricted so that the steps of the form
proof are obvicusly valid. More could be proved by carefu
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arguing, but our purpose here is only to display the group set-
ting of the theorem. :

Theorem. Let G be a locally compact Abelian group and let H
be a closed subgroup. Let the Haar measures on G, H and G/H be

) _ . 1
adfusted so that ﬁ L/HL, and let f be a function of [L* N )(G)

such that g(y) =Lf(xy) dx is a comtinuous function (on G/H) of
y. Then N

[ ey dx = [ fe) d &

' GIH o\
Proof. The character group of G/H is by 35B thg‘éizt'of char-

acters & € G such that (xy, «) = (v, &) for ever&%’{ H. 'Then

@ =[ G =[ {Hfﬁiu}}@y} s | dy

L}HL(xy, a)f(xy) dx dy =L®f(x) dx = f(e).

But by the inversion theorem 5)’“= f (%, &)8(a) dor.  There-
72

fore

Lf(x) dx = g\(@};j;,/hg(a) doe =j{;,/hf(a) dex,

which is the desiregMormula.
§38. COM"Ii@é*"I" ABELIAN GROUPS AND GENERALIZED FOURIER
AN\ SERIES
If G'IS tompact and Abelian, its Fourier transform theory is
Contdined in the analysis of Z/*-algebras carried out in §27 and

lt%\a_ﬁaplication in Chapter VIII. However, a simple direct dis-
tussion will be given here. ' |

38A. Theorem. G /s compact if and only if G is discrete.

i PrPOf. Reversing the roles of ¢ and G we'remark, ﬁl'S.t, tha.t,
G is discrete, then L!(G) has an identity (31D) and G is com-
Pact as the maximal ideal space of a commutative Banaf:h'alge-
bra with apn identity (10B). Second, since L(G) is semi-simple
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and self-adjoint, it follows from 26B that, if & is compact, then
an identity can actually be constructed for 7.M(G) by applying
the analytic function 1 to an everywhere pomtlve function 7 in
the transform algebra, and (by 31D again) G is discrete. The
theorem as stated now follows from the duality theorem.

The second part of the argument can be proved directly as
follows. If Gis compact, then the set of characters « such that
|« — 11|, <% is an open neighborhood of the identity char-
acter 1 (by 34C) which obviously contains only the identity
character; thus the topology of G is discrete. )

£\
38B. Theorem. If G is compact and its Haar mmmm is nor-
malized so that u(G) = 1, then the inversion tkeomm ?egmm’s that
the Haar measure on G 53 normalized so that :%2\ measure of each
point is 1,

Proof. If the measure of a point in Gig 1 then the identity of
LXG) is the function # which has theQalue 1 at « = ¢ and the
value O elsewhere. Since convolutmns on G correspond to ordi-
nary pointwise products on G, u s the transform of # = 1. Thus

(o) fx a)dx = 11if a 2% ‘and = 0 otherwise. Since (%, £)

= 1, this implies that( p\(G) fl dx = 1, so that the measures
match as stated 1 10, t\e theorem.

The above 1dent1ty can also be written f(x ap)( Z:E;) dx =

'\..

f(x 052&{“) dx = 1 if @y = @y and = 0 1f ap # 1. Thus:
Corollary The characters on G form an orthonormal set.

38C The characters form a complete orl};onorma! set m 12(G)
and the (Fourier series) development f(x) = 2,1 (/s anyan Of 4
Junction f € L*(G) is the inverse Fourier transform.

Proof. If f(x) C 12, then f € 12, so that f(a) = 0 except on
a countable set {a,} and, if ¢, = Flo) —ff(x) %, o) A% =
(f: n)s then

Jiseas=fi7paa=rled
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which is Parseval’s equation. The continuous function fﬂ

> % e 18 by 1ts definition the inverse Fourier transform of the
finite-valued functlonf equal to ¢; at o; if i £ # and equal to 0
elsewhere. Since f, clearly converges (12) to /> it follows that /,
converges (L?) to f and that the formula f(x) = 22 c,(x, o) =

ff(a) (%, o) dee is the inverse Fourler transform.

38D. FEvery continuous function on G can be uniformly approgi->

mated by finite linear combinations of characters. O\

This follows from the Stone-Weierstrass theorem, for fhe char-
acters include the constant 1 and separate pointgd “Since the
product of two characters is a character, the set{ot finite linear
combinations of characters forms an algebra havmg all the prop-
erties required. )

A direct proof can be given. First £ is f{pprommated uniformly
by fu where # is an element of @n\approximate identlty in
LYG). Then, as above, fis approxxma”ted Liby fr = 2% cil, ed)
and # by u, = 2 1 di{x, ), whero:: the sequence {a,} includes all
the characters at which eitheryfor # # 0. Then /« » is approxi-
mated uniformly by f, % #al= O.% c: di(x, es). The last equation
can be verified by wrltmgbut the convolution or by remembering
that £, s u, = T*(f Ba)

The partlal sums(of the Fourier expansion of f will in general

hot give unifornhdpproximations.

I
"\s.



Chapter Vil

COMPACT GROUPS AND ALMOST PERIOBIC
FUNCTIONS O\

°\
g W

If G is compact L2(G) is an H*-algebra, aod the whole theory
of §27 can be taken over. Thus L*(G)sis’the direct sum of its
(mutually orthogonal) minimal two-sided ideals, and it turns out
that these are all finite dimensionalN@hd consist entirely of con-
tinuous functions; their identities, (generating idempotents) are
the characters of G. These fagss, which are in direct generaliza-
~ tion of the classical theorydf*the group algebra of a finite groups
are presented in §39, atd in §40 they are used to obtain the
complete structure, of_whitary representations of G. § 41 pre-
sents the theory Qf\,ﬁ}nost periodic functions on a general group,
following a nev;:approach.

39 THE GROUP ALGEBRA OF A COMPACT GROUP

39A~‘;\The Haar measure of a compact group is finite and gen-
crally normalized to be 1. Then || £l = || /il = |l e
\M'Oreover, on any unimodular group the Schwarz inequa ity 1m-
plies that || fuglle = || £ lsl|g|ls Together, these two 1%
equahtglejs show that I* and L? are both Banach algebras. The
latter is in fact an H*.algebra; it is already a Hilbert space an
the further requirements that (f« g, &) = (g, f* # A) | f* |2 =
1/ 1l2 and fxf* 3£ 0 if £ 0 are all directly yerifiable. Thus
S*Jf* is continvous and (f % f*)(¢) = | £ 112 > 0if f # 0, and
the other two conditions follow from the inverse invariance ©
the Haar measure of G, The fact that L%G) is an H * algebra

156
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means that its algebraic structure is known in great detail from
the analysis of §27. Moreover, further properties can be deé-
rived from the group situation; for instance we can now show
that all minimal ideals are finite dimensional. Because of 27F
this will follow if we can show that every closed ideal contains a
non-zero central element, and we give this proof now before re-
stating the general results of § 27.

Lemma 1. A continuons function h(x) is in the center of Hip
algebra L*(G) if and only if h{xy) = h(yx). O\

'\

Proof. /i € center (L%} if and only if Oy

7N
S

S s = i ay = 80

Replacing v by y ! in the second term of 5 ;integrand.and re-
membering that f is arbitrary, the result Yollows: This proof
works just as well for the L' algebraef a unimedular locally

compact group.

Lemma 2. Every non-zero cloyed ideal I < L* contains a non-
- %ero element of the center of L2,

Proof, (After Segal [4;4}‘.)\ Choose any non-zero g € [ 'and' let
f=gxg* fis contintous since f(x) = (g, £ and since g 153
continuous function P as an element of L% Then flaxa™) is 2
continuous functidiof « if & is fixed, and, as an element of L”1sa

: . N —
tontinuous Q@étion of x (see 28B). Thus A(x) =ff(‘”“" 1) da

is continyals, and A(e) = f(e) = || g ||z > 0, so that 4 # 0. Fi-
nall;:)\ if21s replaced by 2y~ in the integral for h(y%), it follows
frOK{ the right invariance of Haar measure that A(yx} = h(xy), _
and hence that 4 is central. Moreover it is easy to see that A €_f3
forfer and £,% € J by 31F, and it then follows from the Fubini
theorem ag in 31F that 4 e It = I, qed. o

It now follows from 27F that every minimal two-sided ideal ¥
of LGy is finite-dimensional and contains an identity_ e. It then
follows further that every function f € N is COH“?‘:“}“S’ for

=fxe, or flx) = (fe, ©), and f, as an element of I2is known
tobea continuous function of .
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We now state the global structure theorem from § 27 as modi-
fied above,

Theorem. I2(G) is the direct sum in the Hilbert space sense of
its (mutually orthogonal) minimal two-sided ideals N, Each mini-
mal two-sided ideal N, is a finite-dimensional subspace of continuous
Functions. It has an identity e, and the projection on Ny of any
SFunction f € LHG) is fo = f % € = eaxf. The regular maximal
ideals of L2 are the orthogonal complements of the minimal wdsals,
and every closed ideal in LY is at once the direct sum of the uspimal
ideals which it includes and the intersection of the masimal ideals
whick include it. N\

The only central functions in N, are the scal Omultiples of the
identity e, and every central function f € L2gs a Fourier series
eXPANSIon f = 3 Nobay WhEre N = [ * ae G i5 Abelian as well
as compact, then each N, is om-dz'me?g;@n\a! and the identities &
are the characters of G. \/

39B. The fine structure of a sih.’glf; minimal two-sided ideal N

is also taken over from § 27, with additions. This time we state
the theorem first. ' N\

'Theorem. I I, - - yNFw are orthogonal minimal left ideals whose
dz?:ect sum is a minipal two-sided ideal N, then Ik, - LY are
?:mnfmaz right idedSywith the same property and I.* N I; = IF+1;
is one-dimensional. Therefore there exist elements ei € I N 1
uniquely at&"’{"?‘mf”fd if i = j and uniquely determined except for &
sm{a:r. 77}{@:1@;’.9 of absolute value 1 in any case, such that eij % ¢ =
2 ff}‘: kand = 0 jfj £ k, o5 = ¢ and e = S e The funi-
f‘fo??‘i."["”ﬁ:‘} Jorm an orthogonal basis for N and the correspondente

) {ew), where f = 3 ¢isei5, is an algebraic isomorphism berweent
V and the full n X n matrix algebra, involution mapping into con-
Jugate transposition.  Furthermore || e )|,2 = n and nea(wy) =
Zieii(@en(y).  The left ideals I; are isomorphic 1o cach other

(under the corresponden i
ce T =1 d ¥ vy other Wil
- left ideal in N, Cij i) and to every

Proof. The only new facts concern the equation nea(xy) :d
2 ii{®)en(y). The lefr ideal 7, has the basis ex <+ €nb 7€
18 mnvariant under left translation. Therefore, given ¥ and ¢
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there exist constants ¢;;{(x) such that ea(ay) = 3, cii(%)en(y).
Then

eis(x) = [eir % e45](x) =fff1(xy)fli(y-l) dy

= 2 i) [emr(Dein(0) dy = ci5(x) |] 51 |]2

= (g‘j(x) ” 11 ”229

which gives the desired result if || e1y ||? = 7. But |{ 15 ||a%. =~
|"v’11 |Penne) = 7 eu@en(x™) = 33 el |2, and inte-

grating we get || ey |[o* = 27| e1i||s? = #lf €11 |12, or || 31‘1””22
= n as desired. by

We have used the symbol ¢ ambiguously for both, {he yidentity
of the group G and of the ideal N. ..,;‘

39C. The identities &, are called characters th the compact
theory as well as in the Abelian theory; thigagain is terminology
taken over from the classical theory of finite groups. It is not
surprising that there is a functional eQudtion for characters here
as well as in the Abelian case. A\

Theorem. 7 f ¢ I*(G), zben ﬂzere exisis a scalar N such that
FINis a character if and on{y iF'there exists a scalar vy such that

\ S
f_g(@@sx_lt) dx =f()j :
Proof. Given a\"éhéracter (or identity) ¢, in a minimal ideal
Noy we have | :(.x.m:“lz‘) dx =fea(m_1tx) dx because ¢, 18 cen-

tral, and tlEn we observe as in 394, Lemma 2, that because of
the left i mVarlance of Haar measure the integral is a central func-
tion, of 3 for every fixed 5. Since this central function belongs to
NenNit'is a scalar multiple of e,

Jeatwss=0) dx = k@)

We evaluate k(s) by taking ¢ = ¢, giving () = k(o) and_

W) de = o()elt)/m, where n = ale) = |l el I

f =2, then clearly f Flxsx—Y) dw = f6) )/, where ¥ = 7
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Now suppose conversely that / satisfies this identity. As above
ff(mx_lt) dx is a central function in 5 for every fixed ¢, and it

follows from the assumed 1dentity that /is central. 1f N, is some
minimal ideal on which f has a non-zero projection f & ¢, = A,
then

fff xsx T De, (7Y dx de = )\fea(xsx'“l) dx = hea(s)
N\
[[ sy ax a ) [ 100 d = 1) \Qf—)
¥ \

Since (fy &) = [f#&l(e) = Neule) = W1, we seethat f(5) =
vel(s)/n, which is the desired result. Notice also that y =
as before. N4

39D. A function f € L2 is defined to hqm’most invariant if 1ts
mixed translates £, generate a finite-dithénsional subspace of L.
This subspace is then a two-sided ideat'by 31F, and is therefore
a finite sum of minimal ideals. Thusf is almost invariant if and
only if f lies in a finite sum .Qf:a%riinimal two-sided ideals. The
functions of a minimal ideal¥can be called minimal almost in-
variant functions, and th&‘expansion f = 2, £ can be viewed as
the unique decomposition of f into minimal almost invariant
functions. N\ '

The set of all_gltnost invariant functions is a two-sided ideal,
being, in fact,’tlie’ algebraic sum 3 s Ny of all the minimal ideals.
The ordinary pointwise product fg of two almost invariant fune-
tions / andig is also almost invariant. For if { fi} is a set of mixed
trangl%{:es of f spanning the invariant subspace generated by /
%Llfl;\éfm'llaﬂ}f for {g;}, then the finite set of functions {f%gi‘}
spans the set of all translates of fg. Thus the set of almost ¥
variant functions is g subalgebra of €(G).

Theo_rem. Every continuous function on G can be uniformly
approximaled by almost invariant functions.

Proof. Ifuis an approximate identity, then # = f approximates
S uniformly (for if 4 = 0 of ¥, then | o s f(x) — =

¥

Ifu(y)(f(y‘lx) —F&) dy | < maxgacy || fy —F e €€ and
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it is sufficient to show that # £ can be uniformly approximated
by almost invariant functions, Let the sequence a, include all
the indices for which f, # 0 or u, £ 0, and choose # so that
[/ — 23 ulle < eand || # — Ftuglls < e Then||asf—
Zil‘ Heoy *fms | w = ” (Et - E? Mag) * (f - ZTfai) ”w < 62, q.e.d.

Another proof follows from the above remark that the vector
space of almost invariant functions is closed under ordinary
pointwise multiplication upon invoking the Stone-Weierstrass.
theorem. A

39E. We conclude this section by showing that the ide;;.]\'th“e?)ry
of LY(G) is identical with that of L2(G). Since I f’”j.. = flla
the intersection with L? of any closed ideal 7 in A i a closed
ideal in 27, If 750, then I N I220. Ipfact, 7N L*is
dense (L) in 7, for if 0 = f & I and # € L'YLZ belongs to an
approximate identity, then s/ belongs t9J°N L? and approxi-
mates f in L'. Since the Ll-closure af@tlosed ideal in L? is ob-
viously a closed ideal in L', the mapping 7 — I N L?is a one-
to-one correspondence between the closed ideals of L' and 2.
The mintmal ideals of 7.2, beinéfﬁnite—dimensional, are identical
with their Z'-closures and any*L'-closed ideal I is the direct sum
in the L! sense of the mifihal ideals it includes. In orde.r to see
this we approximate £€7 by g € I N L* and g by a finite sum
of its components. MEhis approximation improves in passing from
the 2 norm topthe L' norm so that f is approximated L' by a
finite sum of Murimal almost invariant functions in 1.

The othe(’.z?; algebras can be treated in a similar way, anda
unified ap’[}roach to the general kind of algebra of which these
are examples has been given by Kaplansky [26], who calls such
a“\aéébra a dual algebra.

§ 40. REPRESENTATION THEORY

. 40A. Let T be any bounded representation of G. That 1s, T
5 a strongly continuous homomorphism & — Tx of G Omj?c a
&toup of uniformly bounded linear transformations {T.} of 2
formed linear space A into itself.
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Theorem. If H is a Hilbert space, with scalar product (u, v),
then [u, v] = f (Tou, Tov) dx is an equivalent scalar product under
which the transformations T, are all unitary.

Proof. It is clear that [#, v] has all the algebraic properties of

a scalar product except possibly that # = 0 implies {u, #] # &
This follows from the fact that (., T.«) 1s a continuous fgnc—

tion of x which 1s positive at x = e. Also [T, T,0] =J:(\TxT-y“;

T,T,0) dv = f (Taytt, Tuyt)) die = f (Tot, Tut) de = (W3], so that

the transformations T, are all unitary in this’”.scéilar product.
This completes the proof if & is finite-dimengional.
If B is a bound for the norms {{| 7, |;: &\& G} and if ol =

(u, )% ||| u [l = 1%, #1%, we have at o,n'gf;%’that I 1| = Bll# It
Since # = T,-wif v = T,u, we have’ HEH < B|| T || and there-
fore [| || = B||| #[{|. Therefore the norms || « || and || # || are

equivalent and the proof of theltheorem is complete.

40B. We shall assume from' now on that T is always a rep-
resentation of G by unita;y"éberators on a Hilbert space H. We
know (see 32B, C) that(Tis equivalent to a norm-decreasing, if-
volution—preserving\aép%esentation of L' by bounded operators of
H. Since L2 C;Ll and {| fi|. 2 || £]|: if G is compact and

-“(26) = 1;_Wq.'thﬁs have a norm-decreasing representation of
L3(G), whicliwe shall denote by the same letter 7.

H?zlr e#'arguments are valid for the s-representations of any
-algepra.

Aheorem, Every s-representation of an H*-algebra 4 is uniquely

\.«,.’xj:refn'b!e as a direct sum of ( faithful) representations of cer sain of
145 minimal two-sided ideals.

_PFOOf- Let Ny and N, be distinct (and hence orthogon'al)
minimal two-sided ideals of 4 and let H be the representation
space. If fE Ny, ¢ € Ny and u, v € H, then (Tt Tew) =
(#, Tpogt) = 0 since f*y = 0. If we normalize & by throwing
away the intersection of the nullspaces of all the operators Ty
and for every index « set H, equal to the closare of the union of
the ranges of the operators Ty such that f € N, and set T
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equal to the restriction of T to N,, then it is clear that the sub.
spaces H, are orthogonal and add to H and that T is the direct
sum of the representations T¢ of the (simple) algebras N,. Since |
each N, is a minimal closed ideal, it follows that 7 is either O or
faithful, and the kernel of T is exactly the sum of the ideals N,
for which T* = 0. -

40C. The above representations 7% are not necessarily irre-
ducible and we can now break them down further, although.ng\
longer in a unique manner. In our further analysis we shall
focus attention on a single minimal ideal N and a faithfulS&fep-
resentation 7' of N by operators on a Hilbert space A, ¥t being
understood that the union of the ranges of the opérators Ty is
dense in H. Moreover, we shall assume that N.ds“finite-dimen-
sional; our proof that the irreducible constityehts are all equiva-
lent 1s not valid if NV is infinite-dimensionale\/ _

Given a non-zero v; € H, there e)iistfs’a minimal left ideal
I c N, with generating idempotent egsuch that T.o; 7 0. Then
Hy = {Tw.:f €1} is a finite-dimensional subspace of H, in-
variant under the operators T3¢ N, and operator isomor_ph{c
to [ under the correspondenedy — Tyvy. That the mapping is
one-to-one follows in the fdual way from the observation that,
if it were not, then the(Rernel would be a non-zero proper sub-
ideal of 7. That it 15\3\1 operator isomorphism follows from the
equation T (70, =X T Tyyvy = Tesv1, which establishes the fie—
sired relation hefween left multiplication by g on [ and operating
by T, on Hy/OTinally M, is irreducible, for if v = Tyo € Hi,
then ther\ebéﬁcists £ € N such that gf = ¢, so that T = Totn
and thewsubspace generated by v is the whole of 1. X )

Lﬂﬁ} 1s a proper subspace of H, we take vz € H,* and hotice
thagthen (Tpvm, Tyoy) = (o2, Top 1) = 0, 80 that any mn}lmal
subspace derived from o in the above manner 18 automauc-ally
orthogonal to 2. Continuing in this way we break up A wto
a direct sum of finite-dimensional irreducible parts Ha- .If %1
the irreducible representation derived from 7' by confining 1t ;2
H,, then the preceding paragraph and 27E imply that the.
are all equivalent, We have proved: Every faithf ul rep ?:”mm;fgf
o @ minimal clpsed ideal is a direct sum of equivalent irreducitie
Yepresentations,
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40D. We can now restrict ourselves to the case where T is an
irreducible representation on a finite-dimensional Hilbert space /.

Let NV be a minimal ideal on which 7" is an isomorphism and
let {¢;;) be the matrix as described in 39B. We shall use the no-
tation T(f) instead of Ty. T(ew) is a projection since ew =
ews; let Vi be its range. If oy is any non-zero vector of 7, then
o; = Tlep)vy is a vector in ¥y, for T(es)v; = Tlejes)n =
T(ej\)v; = v;, and by a similar argument the vectors v; hayéthe
property that v; = T(e;)v;. Since T{e;)v. = 0 if j 7 nythe set
v; is linearly independent, and if 77 1s the subspace ig-8pins, the
equation v; = T{ej:)v; shows that the coefficient mattiX’in the ex-
pansion of any f € N with respect to (¢;;) is i'deflti'cal with the
matrix of T(f) with respect to the basis {c;kAn 77, Thus /7 is
invariant under T, and is operator isomorphic to any minimal
left ideal in N. Also, since T is irreducible; 77 = /.

If we now use the hypothesis that\Z\s a x-representation, i.c.,
that T(f*) = T()*, then || v; ||XS(Tlej)es, Lles)on) = (oo
Teyei)or) = (o1, Tler)en) = @b or) = || v ]|% and (o, v) =
(T(ei)os, Tles)on) = (or, Tlepsts)en = O if i ;. Therefore, the
basis {z,} is orthonormal-i“fﬁfzil || = 1.

We now again assume(that 7" arises from a representation T of
a compact group. i(ce’ Urf=exfon N, and e*(y) = e(yx ")
= 3 eulyx™) A Tiseu(Nesls ) /n = Loy /ety it
follows that th&miatrix for 7%, with respect to the orthonorm
basis {z;} 'Of\V is ;;,-{_xj/n. Any other orthonormal basis for ¥
arises f' fn) the one considered here by a change of basis trans-
formatioh, and under this transformation the functions ¢ give

risgdt0 a new set of similar functions related to the new basis.
Werhave proved:

Theorem. Let T be an irreducible representation of G &y ui-
tary transformations on the finite-dimensional Hilbert space
Let T be extended to LX(G) as usual, and let N be the minimal ideal
o7 ufﬁz'clz T is an isomorphism, the kernel of T being the regular
maximal ideal M = N*. If ci(%) is the matrix of Ty with respect
to any orthonormal basis for V, then the functions eii{w) = ??fa':i(x)

are matris generators for N as in 39B, and every set of such mairtx
generators arises in this way.
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§ 41. ALMOST PERIODIC FUNCTIONS

In this section we offer the reader an approach to almost peri-
odic functions which as far as we know is new. We start of
with the simple observation that under the uniform norm the left
almost periodic functions on a topological group G form a com-
mutative C*-algebra (LAP) and therefore can be considered as
the algebra e(om) of all complex-valued continuous functions'¢h, *
a compact space 9%, the space of maximal ideals of LAP, (The
points of G define some of these ideals, 2 dense set in fagt; 4nd
9% can be thought of as coming from G by first identifying points
that are not separated by any f & LAP, then filling in new
points corresponding to the remaining ideals, and\finally weaken-
ing the topology to the weak topology defined by LAP.. The
critical lemma states that when G is consideréd as a subset of 9t
the operations of G are uniformiy caf{ré{?}om in the topology of
9% and hence uniquely extensible to‘the whole of 9. We thus
end up with a continuous homgzﬁél‘phism a of G onto a dense
subgroup of a compact group @ity with the property that the fanc-
tions on G of the form fla(s))y/ € €(m), are exactly the almast
periodic functions on G ({&, that the adjoint mapping o* is an
isometric isomorphis ‘of“e(am) onto LAP). _

41A. A left almabe periodic function on a topological group G

18 a bounded confihious complex-valued function f whose set (?f
left translates Sp2= { £,, 5 € G] is totally _bounded u'nder the uni-
form norm,(fPhe reader is reminded that a metric space S 18
totally bo{ihded if and only if, for every e > 0, § can t?e covered _
by a fints number of spheres of radius e. Also, a metric space 13 _
coxipact if and only if it is totally bounded and complete. Since
the¥losure 5, of §; in the uniform norm is automa_nciill}r complete,
we see that £ is left almost periodic if and only 1{ Sf‘1s compact.
Let LAP denote the set of all left almost periodic functions
on {7,
_Ifgis a second fanction in LAP, the Cartesian product space
8 X 8, is compact and the mapping (b &) — A+ ks Con_tl_nl;}
ous. Therefore the range of this mapping, the set of all sums b
2 function in Sy with a function in &, is compact, and thcel: siiat
set 84, is therefore totally bounded. We have proved t
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LAP is closed under addition, and it is clear that the same proof
works for multiplication.

Now suppose that /* € LAP and f* converges uniformly to f.
Since || /%2 — fe llo = || /* — /|| the sequence f"; converges uni-
formly to fu, uniformly over all x € G. If, given € we choose
# so that || /" — f |l < ¢/3 and choose the points x; so that
the set { .} is ¢/3-dense in Sy, then the usual combination of
inequalities shows that { f,;} is e-dense in . That is, f € TAP,
proving that LAP is complete. O\

If f is left almost periodic, then so are its real and(imaginary
parts and its complex conjugate. Thus LAP is clgsed under the

involution f — f. We have proved: .\Q

Theorem, Under the uniform norm the Set’of all left almost
periodic functions on a topological group QNS a commutative C*-
algebra with an identity. 2\ N

41B. It follows from the abovg't.he'orem (and 26A) that LAP
is isomorphic and isometric to(the space e(m) of all complex-
valued continuous functionsGit* the compact Hausdorff space 9
of its maximal 1deals. quhfoint 5 € G defines a homomorphism
f = f(s) of LAP ontg.the complex numbers and there is thus 2
natural mapping « ﬂkf\c into 91 (where a(s) is the kernel of the
homomorphism cgrresponding to 5). The subsets of 3t of the
form §34: | AMY~ k| < € form a sub-basis for the topology of
9. Since 'thﬁihverse image under a of such a set is the open sct
{oe] f(f}\'T\‘E | < ¢, the mapping « is continuous. «(G) 18
dense m\im since otherwise there exists a non-zero continuous
f:gqc\;iah on 91 whose correspondent on G is identically zero, 3
contradiction.

The mapping « is, of course, in general many-to-one and it is
not 2 priori clear that the families of unseparated points in § are’
the cosets of a closed normal subgroup and that « therefore de-
fines a group structure in the image «(G) < M. Supposing this
question to be satisfactorily settled there still remains the prob-
lem of extending this group structure to the whole of . An
analysis of these questions shows the need of a basic combinatoria]
lemma, which we present in the form of a direct elementary Pfoof
that a left almost periodic function is also right almost periodic-
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The key device in this proof is the same as in the proof that the
isometries of a compact metric space form a totally bounded set
in the uniform norm.

Lemma. [f /< LAP and e > 0, there exists a finite set of
points [é‘-} Such that given any b one of the points b; can be chosen
so that | flxby) — Fixbiy) | < efor every x and y.

Proof. Let the finite set { £} be e/4-dense among the lefe \
translates of /. Given & € G and 4, £, is within a distance g4
of f,, for some j, and letting / vary we obtain an integerévalued
function 7(7) such that |} fus — far |le < ¢/4 for eversii. For
each such integer-valued function j(7} let us chogs€’ene such &
(if there is any) and let {4;} be the finite set so obtained. Then,
by the very definition of {&;}, for every & thefe\éxists one of the
points &; such that i| f.s — fuse || < €/2 frall i: Since for any
% € G we can find g, so that || f. — £i{Z ¢/4, we have | fap —
f:;kaw = H f:cb _fa\'b”:n + ” fa,’b _,;ft;;EJ;Hm + ‘fﬂibk _fwlbk““’ <
/44 ¢/2 + ¢/4 = ¢, That is, fofrevery & € G there exists one
of the points 4, such that | flxbg)™= fxbry) | < e for every » and
¥ qed. S

Corollary 1. The ;,.exo\i[},-,,] defined by fi(x) = Flbbs) is 2e
dense in the set of all wmixed translates { .4

Corollary 2. Ifx and y are such that | f{bxb;) — f (Bsybp) | < e
Jor all § a}m’_;',}é}ﬁ | Aluxw) — fluyw) | < Sefor all u and v € G.

Proof, ,G%én # and v we choose i and j so that || fwx0) —
fbwb;) .u;.:‘< 2e. This inequality combines with the assumed in-
equa}it:)z 'to yield I Fluxo) ~f(uy£=) | < 5, as desired. ]

41€0 We now show that multiplication can be unlc_luely €X-
tended from G to the whole of % by showing that, given M,
% € 9 and setting # = a(x), if #; — My and “"2_'_) Mj, then
Y1¥%y converges. What we already know is that, gl‘_fﬂﬂf and 3
there exist weak neighborhoods Ny and Ny of the Eomts M, ;n .

2 fespectively such that, if £, $1 € M and £2, J2 € Nz:ltl en

LD —/(y1y2) | < ¢ this follows from the second coro ar})(
of the paragraph above upon writing f(x1%2) "f()'l.j’/?} =f(x19;
" S y) +f(e1y2) — flx2ys). The family of sets {%172: %1 €M
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and x; € Ny} obviously has the finite intersection property as
N, and N, close down on 34, and M, respectively, and, 3 being
compact, the intersection of their closures is non-empty. If M
and M’ are two of its points, then | /(M) — /(A1) | < e for every
¢ > 0 and every f € LAP by the second sentence above, so that
M = M'. We conclude that, given M, and A5, there is a unique
point M such that, for every weak neighborhood N(M), there
exist weak neighborhoods N1(M,) and N, (M) such that 4 &Ny
and #» € N, imply that #1 % € N. This shows firsg (that the
product M;M, is uniquely defined, and second, letting #, and
#s converge to other points in N, and Ny, that the(product MM
is continuous in both factors. The reader whédis familiar with
the theory of uniform structures will realize ¥hat the above argu-
ment is a rather clumsy way of saying that %1%, 15 a uniformly
continuous function of #; and £, in thetiniform topology of 9
and hence is uniquely extensible to’the whole of 1.

We still have to show the exisgence and continuity of inverses,
l.e., loosely, that, if £ — M, 'tli‘éﬁ x~1 converges. But by Corol-
lary 2 of 41B, given f € LAP4nd ¢ > 0 there exists a weak neigh-
borhood N(M) such that{if v, y € N, then| flaxv) — fuyo) | <e
for all # and ». Taking u = s~ and v = y ' this becomes
P A(y™) — fx™") [ € and proves exactly in the manner of the
above paragrapH the existence of a unique, continuous homeo-
morphism MN% M~ of M onto itself such that £7' = Canh
for all » €%, Thus MM~ = lim (#4~%) = ¢ and M " is the
inverss\;‘{a’f"M. We have our desired theorem. '

Theorem. [f G is any topological group, there is @ compact
(Erop M and a continuous homomorphism o of G onio a dense sub-
Bfoup of 9 such that a function f on G is left almost periodic if and
o.n{y if there is a continuous function g on 9 such that f(s) = glals))
(e f = a*g).

' There is a further remark which we ought to make in connet-
tion with the above theorem, namely, that the group 9 is unique
to within isomorphism. For if 91 is any second such groub; with
homomorphism 8, then g*—'a* is an algebraic isomorphism ©
e(9m) onto (M) and defines an associated homeomorphism ¥ C.’f
M onto M'. Since v is obviously an extension of fa ™, which 19
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an isomorphism on the dense subgroup a(G), ¥ itself is an iso-
morphism. That 1s any two such groups M and M’ are continu-
ously isomorphic. _

41D. Because of the above theorem the set of (left) almost
periodic functions on a group G acquires all the algebraic struc-
tare of the group algebra of a compact group. Thus any func-
tion of LAP can be uniformly approximated by almost invariant
functions, that is, by almost periodic functions whose translates /
generate a finite-dimensional subspace of L®. The more precise
L? theorem according to which any almost periodic functiont has
a ouricr series expansion into a series of uniquely determined
minimal almost invarant functions is also avaﬂable,..]?xi’t"it has
an apparent defect in that the Haar integral on thévassociated
compact group scems to be necessary to defing\the scalar prod-
uct. However, von Neumann [39] showed thatan intrinsic defi-
nition can be given for the mean M(f)..t}f"an almost periodic
fanction by proving the following theor@nf:

Theorem. The uniformly closed convex set of funciions generaled
by the left translates of an almostperiodic function f contains ex-
actly one constenst [rnction. N

The value of this co 15’{‘;:;: function will, of course, be dCS'lg'
nated (). Von Néwnann proved the existence and properties
of M(f) by Complt;(él:}“"elel'nentary methods, using only the defi-
mtion of ulmost plsfodicity. 1t will be shorter for us In view of
the above th of'y“to demonstrate the existence of M(f) by using

the Haar infedral on on. Since it will turn out that M{f) =

fd’f«{ s will also have proved that the expansion theory based

) .o . . ver
on t}e von Neumann mean is identical with that taken o

from the associated compact group. .

Proof of the theorem.p T heg conlzrex set generated by 87 1s t}f
seYt of finite sums S cif(awx) such that ¢ > ¢ and 2=l
We l_lave to show that M(f), and no other constant, can be ap-
Proximated uniformly by such sums. In view of the isometrc
- Imbedding of , into e(sm) and the fact that «(G) 18 dense In 9
" will be sufficient to prove the theorem on . Given ¢ chooic
V50 that | %) = £(3) | < ewhenxy ™ € V7 and choose & € Ly ™
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© Since 9% is compact, there exists a finite set of points 4y, -+, 4,
such that H{x) = X A(xa;~") > 0 on on. The functions g =
4% /H thus have the property that g; = 0 outside of ¥4, and that

Egi(x) =1. If ¢ =fg3-, then
[ 760 de = Zefta) | = | Ef et — fanlds] <«

since | flxy — flaiy) | < e when gi(x) # 0. Thus M(f)\=ff 15

. KQ N

approximated by the element } ¢;f,, of the convex set’ detet-

mined by §;. \ S
Conversely, if k is any number which can beso approximated,

12 — 20 cif(aiy) |l < e then | & -ff(y) djﬂ‘k e follows upon

oy
7

. . ANY;
integrating, so that % =ff = M(f),ﬂ(kfe.\i.

 Corollary. Using M(f) as an integral on the class of almost
periodic functions, every almosg\periodic function has a unigue L?
expansion as a sum of minigi@? almost invariant functions.

41E. If G is Abeliang‘then its associated compact group G, is
both compact and, Abglian, and can be readily identified. The
minimal almost inv\anant functions on G, are, of course, 1ts char-
acters, and it follews that the minimal almost invariant functions
on G are thQ'[E:Baracters of G, for f(x) = Ala(x)) is clearly a char-
acter on GGf 7 is a character on G.. The adjoint of e thus de-
termiped an algebraic isomorphism between the character groups
of"(}.fand G,. Since G, is discrete, it is completely identified as

'"k{e‘l\llg the abstract group of characters on G with the discrete
gopology. Thus G, is the character group of G° where GO is the
character group G, but in the discrete topology.

On an Abelian group the approximation and expansion theo-
rem states that every almost periodic function can be uniformly
approximated by linear combinations of characters and has 2
unique L*? expansion as an infinite series of characters. In par-
ticular a function is almost periodic on the additive group of real
numb.e:rs if and only if it can be uniformly approximated by linear
combinations of exponentials, Somee™#, This result will become
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the classical result when we have shown that the von Neumann
definitions of almost periodicity and mean values are equivalent
to the classical definitions. This we do in the next two theorems.

. 41F, Theorem. A continuous function f on R is almost periodic
if and only if, for cvery e, there exists T such that in every interval
of length T there is at least one point @ such that || f = fu|lo < e

Proof. We first rephrase the above condition as follows: fotl
every ¢ there exists 7 such that for every a there exists 4 € [,
T] such that || f. — full. < e e

If /is assumed to be almost periodic and if the s\et}"{’fa‘.} is
edense in S, then we have only to take [— 7, T] as'the smallest
interval containing the points {a@;} to meet theff'j?phrased con-
dition. \

Conversely, suppose that T can always bé'\}éund as in the re-
phrased condition. We first show thatf4s niniformly continuous.
To do this we choose § such that | (x4 9 — ) | <eif v €
=T, T and | #]| < 5. Then, givéns any x, we can choose & €
[~7, 7] so that || £, — /s || <\€'and have

ot i) = 1) | < 1 S 49 = £6 + )

£

+j\}'@ LN — B+ ] B )] < 3e

Thus || 7 — £, |] 283éif | ¢| < ». ,

Now let {a), ", a,} be s-dense on [=T, T]. Given a, We
first choose,\\big [—7, T] so that || fu — /b | < e and then 4:
]Sl“;h that, i’:aa' — & | < 8, and therefore such that || /s — foslln =
1 b—’-”c{‘-;‘\:f

I, < 3easabove. Thus|| fo —/u =l fa -‘le” +
l|f3\“‘fa.- [| < 4¢, proving that the set { fan oty fout 18 He-dense
6§, and therefore that f is almost periodic.

T
41G. Theorem. M(f) = lim 'Q_If_ﬁff(x) dx.

Ty @

Proof. Given e, we choose the finite sets {c;} and {_@i} such
tha | M(f) = S ciflr — a) ||l < & It follows upon integrat-

" that | M(7) — (S0 [ o —a) d0T[ <o 10 ther
—~T
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choose T > T. = (|| f ||»-max| a;])/¢, it follows that

1 T 1 T—a; . 1 7
2T "Tf(x —a)dx = 2]r,f_T_ﬂ‘_f(y) dy = 7 f____fpf(y) dy + 5
where | 8:| < |a; ||| f|I/T < e Therefore
1 T
| M(f) MZTfmTf(y) dy | < 2e \ AL
whenever T > T, q.e.d. R V)

The alternate characterizations of almost periodicity” and 3(f)
given in the above two theorems are the classieal ‘ones for the
real line. Thus the basic classical results .now follow from our
general theory. \ '

41H. We ought not to close this secti&‘withont some indica-
tion of the usual definition of the ggtspact group G. associated
with G by its almost periodic functfi;:)‘ris. We have defined a left
almost periodic function f to belsuch that the uniform closure
S; of the set §; of its left translates is a compact metric space.
Let U/ be the restriction™of the left translation operator Us
(Uof = fo-) to §;. ULis"an isometry on §; and an elementary
(but not trivial) ¢atpument shows that the homomorphism
a = UJ of G inkg the group of isometries on §; is continuous,
the uniform nofti being used in the latter group. Now, it can
be shown by'ah argument similar to that of 41B that the isom-
etries of @)ompact metric space form a compact group under
the upiform norm. Thus the uniform closure Gy of the group
{Ud82 € G} is a compact metric group, and the Cartestal
xgr‘?dh‘?t I1; G; is compact. Let & be the group of isometries T
of LAP onto itself such that for every f the restriction 77 of 7
to §; belongs to G;. Each isometry in G determines a point of
I1s G and it is easy to see that the subset of []; Gy thus deﬁ'neld
is closed and hence compact. That is, G itself is compact if 1t
is given the following topology: a sub-basic neighborheod of an
isometry Ty € G is specified in terms of a function f € LAP and
a positive number ¢ as the set of isometries 7' € G such that
T~ Ty | < e. Also, under this topology the homomorphisim
 of G into G defined by a(s) = U, is continuous.
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1ff € LAP, then | /) — f0) | = 1o — £, < || U — US|l
That is, the function F defined by F(U,) = f(x) is uniformly
continuous on a dense subset of Gy and hence is uniquely exten-
sible to the whole of G Since the projection of G onto Gy (T — 17)
is continuous, we may then consider F to be defined and continu-
ous on the whole of G. Moreover Fa(s)) = f(s) by definition.
Thus for each f € LAP there exists F/ € e(G) such that f(s) =
F(als)). Conversely any continuous F on the compact group @
is almost periodic as we have observed earlier, and Fla(s)Es"
therefore almost periodic on G. Thus G is (isomorphic ta)ythe
compact group associated with G. This method of congtructing

the compact group is essentially that given by Weil 48],
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SOME FURTHER DEVELOPMENTS
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7N *
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In this chapter we shall give a brief résumé of'results in areas
of this general field which are still ounly partially explored. Our
aim is not so much to expound as to indiga¥e)a few of the direc-
tions in which the reader may wish tq\éxplore the literature
further. Tt is suggested in this connedion that the reader also
consult the address of Mackey {35]jnt$hich many of these topics

are discussed more thoroughly. | ™
&

§42. NON.GOMMUTATIVE THEORY

42A. The PIanchere}Q:heorem. We start with the problem of
the generalization t{"th’e Plancherel theorem. Tt may have oc-
curred to the reager™that there js a great deal of similarity be-
tween' the Fourier’transform on an Abelian group and the ex-
pansion of aif:u\nction into a sum of minimal almost invariant
functions o/a tompact group. The following properties are
shared las\\t'he two situations. There exists a locally compact top-
ological $pace G, and with each point o € G there is associated a
mu}ij’nﬂ translation-invariane vecror space V7, of bounded con-
tintous functions on @, For each f € L! there is uniquely de-
termined 3 component function £ & ¥, such that, for each fixed
%, (%) 1s a continnous function of @ vanishing at infinity. There

is 2 measure y on ¢ such that, for each £ & L N #(G), Ailx) €
LMy) for each and f(x) :ffa(x) dule). 7, 1s a (finite-dimen-

sional) Hilbert space In a natural way, and, if f € L' N LG,
174
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then || 7 [|22 =f[| fo [ dula) (Parseval’s theorem). Thus the

mapping f — f, can be extended to the whole of L2(G) preserv-
ing this equation, except that now £, is determined modulo sets
of u-measure 0. This is the Plancherel theorem. :

In each subspace 7, there is a uniquely determined function
¢, characterized as being a central, positive definite, minimal al-
most invariant function. The component £, in ¥, of a function
S € L' 1s obtained as f, = f % &x = Uje,, where U is the left regin
lar representation. The subspaces 7, are invartant undex .U,
and, if U* is the restriction of U to 7, then the functidon™, is
also given by ¢,(x) = trace (U*;). The component f, ha¥'a simi-
lar alternate characterization, fi(x) = trace (U“Uf%gh

The Abelian case s simplified by the fact that the subspace
¥, is one-dimensional, consisting of the scala¥” multiples of a
single character a(x), but is the more complieated case in that a
function f is expressed in terms of its cethponent functions f, by
an infegration process rather than a(hfmmation process. The
compact group case is simpler in the latter respect; f is an ordi-
nary sum of its components fe3But the subspaces 7, are not
one-dimensional. N

It is, of course, impossible without some expertence to select
from the above rich cpliéCtion of properties common to the com-
pact groups and the’;%klian locally compact groups those which
could be expected-fe’hold, and constitute a Plancherel theorem
and its associatedhexpansion theorem, on a locally compact group
which is neith}a??:ompact nor Abelian. However, the success of
the above‘&\im'posite theory is in some sense due to the presence
of sufficiently many central functions, and the extent to which it
15 a.gé;ﬁéi"al phenomenon must be connected with the extent to
whitl’ the general group has or does not have central functions,
or at least central behavior of some kind. '

What success has been achieved in the general situation has
been based on von Neumann’s reduction theory for rings of
aperators [40] which we now proceed to ol{tline. _

We suppose given a measure space §, with each point & € S
an associated Hilbert space H,, and a vector space of functions

fon § such that f{«) € H, for every e € 8 and i fle} || € L2(8).

+



176 SOME FURTHER DEVELOPMENTS

The ordinary L?-completion of this vector space is then a Hil-
bert space H of functions f of the above type, and we write

H =fHa dula), where u 1s the given measure on §.

If we are given a separable Hilbert space A and a complete
Boclean algebra ® of commuting projections on ff, then the
standard theory of unitary equivalence can be interpreted as

giving a direct integral representation of #, f = fH dua), such
that the projections of & are exactly those pro_]ectlons\Ec asso-

clated with the measurable subsets C of S, E,gf ff(a) dp.

If H= fH dp(e) and if T is a bounded operator on H, then
T is defined to be a direct integral if andpuly if there exists for
each « a bounded operator 7, on H siigh“that, if x = | x, dula)

€ H, then T(x) f(Taxa) d;.z(a) One of von Neumann’s basic

theorems is that, if T commutes w1th all the projections F¢ asso-
ciated with the measurablé\subsets of the index space S, then T
is a direct integral. oS

An algebra of boutded operators on a Hilbert space H is said
to be weakly closdd)if it is a closed subset of the algebra of all
bounded operatofs in the weak topology generated by the func-
tions fo (T)&(Tx, ¥) and if it is closed under the involution
T - T*\ or any set @ of operators, @ is defined to be the set
of all operators commuting with every operator in @. Then it is
a funslamental fact that a s-closed set @ of operators is a weakly-
dQsed algebra if and only if @ = @”.

If @ 1s a weakly-closed algebra, then @ N @' is clearly the cenfer
of @ The center of @ consists only of scalar multiples of the
identity if and only if the union @ U @ generates the algebra
B(H) of all bounded operators on H; in this case @ is said to be
a factor. Von Neumann and Murray’s dimensional analysis of
factors, with the resulting classification of all factors 1nto types
I, I, I1,, 11, and I11, is one of the basic results of the theory,
but will not be gone into here.
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~ Now let & be ﬁny weakly-closed algebra of bounded operators
on H and let H =fHa dula) be the expréssion of I as a direct

integral with respect to the center of @& That is, the projections
E¢ associated with. the measurable subsets € of the index space
are exactly the projections in the center of @. Let T, be a se-

quence of operators in @& which generates @, let T, = f Toa dihe)

be the direct integral expression of T, and let @, be the weakly-
closed algebra of bounded operators on H, generated by the se-
quence T,. Then @ is the direct integral of the ‘algebras @,
in the sense that a bounded operator T on H helotigs to @ if

and only if it is a direct integral fTa dp(a)‘ﬁﬁere Ty € Ga

Another of von Neumann’s fundamentalgheorems is that in this
direct integral decomposition of @ aljdst all the algebras @, are
factors, and that @' is the direct infegtal of the commuting fac-
tors @,. Godement, Mautner.and Segal ([211, [37], [38], [45];
Godement’s major work in this direction is unpublished at the
time of writing) have considered L (G) on a separable unimodular
locally compact group Grag both a right and left operator algebra
on the Hilbert spa e»Lg'?G) and have observed the fundamental
fact that, if £ and\® ‘are the weak closures of these operator algf:-
bras, then £’ =-@-and ® = 8. Thus the intersection & Na&is
the center of €3ch algebra, and von Neumann’s reduction theory
implies h;a{ig}j’ — I2(G) can be expressed as the direct integral
of Hilbere spaces H, in such a way that each operator 48
the ditect integral of operators 4, acting on H,, and the w-f:akly-
piosfea algebra £, generated over H, by the operators A is, for
alhost all o, a factor.

This analysis of £ into factors is what corresponds to .the analy-
sis of Z1(G) into minimal parts in the simpler theories, and 2

Parseval formula is valid; if f € L* N L2, then I/ 12" =ftrace

UpUp® de. However, these oversimplified statements conceai1. a
multitude of complications and the reader is referred to the lllt—
erature cited above for details. Godement has so {ra{_ﬂedddES
work that it applies to other t+wo-sided representations 1n addl-
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tion to the two-sided regular representation mentioned above, and
he has introduced a topology into his index space, starting with
the observation that the common center £ N & is a commutative
C* Banach algebra and therefore is isometric to the space e{(omn)
of all continuous complex-valued functions on 1ts compact Haus-
dorff space of maximal ideals. The points M &€ o1, subject to
certain later identifications, are Godement’s indices a. Kap-
lansky [28] has investigated a much narrower class of groups bt
obtains a much more satisfactory theory as a result. O\

42B. Representation theory. The above Plancherel\théorem
can be interpreted as the analysis of the left regula}f}répresenta-
tion of G into factor representations, and suggests the correspond-
ing problem for arbitrary representations. Thi® s not the same
thing as analyzing a representation into '{rcducible parts, but
seems to be in many ways the more ndfhral objective. Very
little is known as yet about the genegal representation theory of
locally compact groups beyond the basic facts that sufficiently
many irreducible representations<always exist and are in general
infinite-dimensional. O8N

However, there is considerable literature on the representation
theory of special groupsfahd of general groups with respect to
special situations. Th’é'Russians have published a series of pa-
pers (of which we have listed only one, [14]) analyzing the irre-
ducible represenfafions of certain finite-dimensional Lie groups.
Mackey {36] has’been able to subsume many of these special re-
sults under(3 “generalization of the theory of induced represen-
tations‘ féom its classical setting in finite groups to separable uni-
modgllaf"locaﬂy compact groups. The representation theory of
Liegroups has also been explored in its connection with the rep-
reséntation theory of Lie algebras.

We saw in § 32 how representations of groups are intimately
associated with representations of the corresponding L!-algebras.
In fact, group algebras were first introduced as an aid in the
study of the representations of finite groups (see [32] for a short
account). Of course, the representation theory of general Banach
algebras is a natural subject for study, quite apart from such
motivations. Unfortunately, the results are meagre. We have
cited two. One is the theorem of 26F on the representations of 2
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commutative self-adjoint Banach algebra, and the other is the
theorem of Gelfand and Neumark [13] to the effect that every
C* algebra is isometric and isomorphic to an algebra of bounded
operators on a Hilbert space. These are, of course, very restricted
conclusions, but little s known of general representation theory,
even for such a special case as that of a Banach algebra with an
involution (see [28]).
Q"
§43. COMMUTATIVE THEORY O\
43A. The Laplace transform. Mackey [34] has observed that
the kernel ¢©+#)5 of the classical Laplace transforthican be given
o characterization valid on a general locally ‘@mpact Abelian
group in much the same way as Fourier\tfansform theory is
shifted to this setting by replacing the ketwel ¢ by the general
character function a(s). The foIlow'ﬁg.\description is an over-
simplification but will illustrate thg.k'i% of step to be taken. We
replace the mapping s — (x + iy)r, where x and y are fixed, by
a continuous homomorphism.z}i’of" an Abelian topological group G
into the additive group of«¢heé complex numbers. The set of all
such homomorphisms js clearly a complex vector space V and
an element v € ¥ wilb be called simply a vector. The kernel
=T i then re’]&f&éed by the kerne! e, v € V,s €G,and
the generalized Daplace transform is the mapping f — F where
AS

\\“ F(v) =fe"(8)f(.r) ds.
A COI’,ﬁaex—valued function defined on a suitable smgbs.et of ¥ will
..be‘ﬁh'ia to be analytic at v if for every # eV tllle limit F(z, u) of
Sof F(o + ) — F(v)/ exists as the complex variable A approaches
0. Leaving aside questions of existence, We €€ thflt formally
the Laplace transform F of a function f on G 1s analytic and

F(v, u) =fe"(”u(5)f(.r) ds.

uitably restricted L? sense 2 func-
fandonly ifitisa Laplace trans-
place transform theory have

Mackey has shown that in a s
tion F defined on ¥ is analytic i
form. Many other theorems of La
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natural extensions, and the abstract setting of the theory seems
to lead to a fruitful point of view. In particular, it is expected
that some of the theory of functions of several complex variables
will be illuminated by this general formulation.

43B. Beurling’s algebras. Another problem which leads to this
same generalization of the Laplace transform, and which has
been discussed in a special case by Beurling [4] is the theory of
subalgebras of L1(G) which are themselves I.! spaces with regpcet
to measures “‘larger than” Haar measure. The example gensid-
ered in the second part of 23D is a case in point. More générally,
suppose that w is a positive weight function on ah Jarbitrary
locally compact Abelian group such that w(xy)ogfw(ox)w(y) for
all x, ¥ € G. Then the set L of measurable functiénsf such that

f |/ [ < o s the space L3 () where u(4)5 f w(s) ds, and the
K g A

inequality on o assumed above implieg~that L¢ is closed under
convolution and is commutative Ban&th algebra. A simple con-
dition guaranteeing that L® is a.subset of L}(G) is that « be
bounded below by 1. Then everyiregular maximal ideal of L'(G)
defines one for L (see 24B) and‘the maximal ideal space of L'(G)
1s identifiable with a (clased) subset of that of L¢, generally a
proper subset. The ho@morphisms of L# onto the complex num-

bers are given by fqnf,tions Bar & L*(G), /(M) fo(J)BM (s)ew(s) ds,

and a simple argiytfent as in 23D shows that the product 8y (5)e(s)
is a gmemz’iza{d\:}mmcter, that is, a continuous homomorphism of
G into tl}&&ﬁultiplicative group of the non-zero complex num-
bers, and ‘therefore that its logarithm, if it can be taken, is what
we.have called in the above paragraph a vector. The transforms
Jefthe elements £ € L¢ are thus generally to be considered as
bilateral Laplace transforms, and the theory of such algebras L*
merges with the general Laplace transform theory.

43C. Tauberian theorems. In case « is such that the convolu-

tion algebra L = { f: f[ f|@ < «} has the same maximal ideal

space as the larger algebra 21(G) it is natural to consider whether
1de?.l theF:retic theorems such as Wiener’s Tauberian theorem re-
main valid. Questions of this nature were taken up by Beurling in
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1938 [4] for the special case of the real line. Beurling’s basic theo-
rem in this direction is roughly that, if

|logw(x)l
1+ %2

then ¢ is regular and the Tauberian theorem holds: every closed
proper ideal lies in a regular maximal ideal.

It should be remarked that Beurling proved and leaned heayily
on the formula: || ||, = lim || f*|]*» His proof uses the prop-
erties of the real numbers in an essential way and does\'ﬁnf’ gen-
eralize; Gelfand’s later proof of the same formula ford general
Banach algebra is based on an entirely different approach.

Returning to our main theme, we notice that-the Tauberian
theorem on a locally compact Abelian grougcan be rephrased as
the assertion that any proper closed invariant subspace of L‘(Q)
is included in a maximal one, and theh ‘ean be rephrased again,
via orthogonality, as the statemeng that every non-void tr'ar.lsla-
tion invariant, weakly-closed sub§pace of L* includes a minimal
one (the scalar multiples of @ character). In another paper [5]
Beurling has demonstrated’this form of the Tauberian theorem
for a different space, th€space of bounded continuous functions
on the real line, undén'\ the topology characterized by uniform
convergence on cofmpact sets together with the convergence of
the uniform nosfitself. In addition he showed that unless the
closed invaridnt subspace is one-dimensional it contains more
than one eiponential. This is clearly the analogue of the Segal-
Kaplal}%y*;Helson theorem, and suggests that we lfaave t}}e gen-
eral ‘Fatuberian problem in the following form. It is requited to
ﬁl‘{d\ébnditions which will imply that a closed lxdea,l ina comnlilu—

“tative Banach algebra A shall be the kernel of its hull, or, dua yci
that a weakly-closed invariant subspace of A* shall be spanne
by the homomorphisms which it contains. The f:ond1t1on cal}
be either on the algebra or on the subspace, and in the ;:lasebo
groups it can be on the measure defining the convolution algebra
or on the used on the conjugate space. . .

oD, pr;ﬁ?geal& Although a closefi ideal in.a commuta.tlv;
Banach algebra is not, in general, the intersection of m::;flfllar
ideals (i.e., not the kernel of its hull there are two SPEC

dn < o0,
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cases in which it is known that every closed ideal is the intersec-
tion of primary ideals, a primary ideal being defined as an ideal
which is included in only one maximal ideal, The first {due to
Whitney [49]) is the algebra of functions of class € on a region
of Euclidean n-space, its topology taking into account all deriva-
tives up to and including order #.

The second (due to Schwartz [43]) is the algebra of all bounded
complex-valued Baire measures on the real line which are sdps
ported by compact sets, with the topology which it acquires as
the con_]ugate space of the space of all (not necessarily bourded)
continuous functions under the topology defined by yuiform con-
vergence on compact sets. The continuous homemerphisms of
this algebra into the complex numbers are givew-by exponentials

et (6(a) =f€°“ du(£)) and the regular maxim{llgideal space 1s thus

identified with the complex plane, thestransforms 4 forming an
algebra of entire functions. Every primary ideal of this algebra
is specified by a complex number &pand an integer 7, and con-
sists of the measures u such thdf* s and its first # derivatives
vanish at &. And every clogecfideal is an intersection of primary
ideals. A\

In both of these exarflés the presence and importance of pri-
mary ideals are conn:c\ted with differentiation.

43E. We conclude'with a brief mention of a remarkable analogy
which has been\s{tﬁdied by Levitan, partly in collaboration with
Powsner, in ﬁ'series of papers of which we have listed only [31].
Levitan observed that the eigen-function expansions of Sturm-
Liouville~differential equation theory can be regarded as a gen-
erafigation of the Fourier transform theory of group algebras as
disoussed in Chapter VII. Specifically, let us consider the dif-
ferential equation 3 — (p(x) — N}y = 0 on the positive real
axis, with a boundary condition at x = 0. With this ordinary
differential equation we associate the partial differential equation
Hae — Uyy — (p(x) — p(y))z = O with initial conditions #{x, 0) =
S%)s #y(%, 0) = 0, where p and £ are even functions. The solu-
tion z(x, y) = [Tg,rf (x) is regarded as a generalization of the
translation of f(x) through y. If generalized convolution is de-
fined in the obvious way an L' convolution algebra is obtained
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which has very far-reaching analogies with the 7! group algebras.
The following topics can be developed: generalized characters
(eigen-functions), positive definite functions, Bochner’s theorem,
the L'-inversion thcorem and the unique measure on the trans-
form space, and the Plancherel theorem. The theory is valid not
only when the spectrum is discrete but also in the limit point
case when the spectrum is continuous, although it is not yet
fully worked out in the latter case. The reader is referred to. the,

literature for further details. A
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The refererices in the index are, principally, either to the definitions
of terms or to the statements of theorems.

Absolute continuity, 40
Adjoint, 21
Adverse, 64
Algebra, 8
Banach algebra, 16, 48
function algebra, 53
group algebra, 123
(see Banach algebra)
Almost invariant function, 160
Almost periodic function,
(§41)
Analytic function theorem, 78
Annihilator, 20 .
Approximate identity, 124 Q
Axiom of cheice, 2 e
&
Baire function, 32 ()
Banach algebra, }6i48
C* algebra, 28,88, 91
H* algebra; V60
regular' Banach algebra, 82
self-adfoint Banach algebra, 88
sendissimple Banach algebra, 76
BS{@Ch space, 13
réflexive Banach space, 20
Basis, 3
Bessel’s inequality, 26
Bochner theorem, 97, 142
Boundary, 80

165

C* algebra, 28

commutative C* algebra, 88, 91
Carrier, 84

Cartesian product, 10

Q"
Central element (functi({nj',ﬁ\lOS,
157,175 O

Character, generaliz’é&;‘lSO

of a compact ggolp, 159

of an Abeliaf{group, 135

of an alge\bra, 71

real, 132N
Charagtes group, 137
Clos¢d graph theorem, 17, 18
Cldsed set (closure), 4

'.fCompactiﬁcation, of a completely

regular space, 55, 56

one-point, 7
Compact set, 5
Completely regular space, 55
Complex ZP.-space, 46
Conjugate space, 18
Continuity, 4
Convolution, 120-122

Daniell integral, 29 (§ 12)
Directed set, 1, 2

Direct integral, 176
Direct sum, 16

Ditkin, condition of, 86
Dual algebra, 161

Equivalent functions, 36, 37
Extendable linear functional, 96

Factor, 176

Finite intersection property, 5
Fourier series, 153 (§ 38)
Fourier transform, 71, 135

188
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139

Fubini theorem, 44
Function algebra, 53

inverse closed, 54

regular, 57

self-adjoint, 55 i
Gelfand representation, 53, 70 -
Group algebra (ring), 123 (§31)

Haar integral, 115 (§ 29)
normalized, 144, 154
on quotient spaces, 130 (§ 33)
Hahn-Banach theorem, 19, 20
H* algebra, 100 (8§ 27)
Hausdorff space, 5
Heine-Borel property, 4
Herglotz-Bochner-Weil-Raikov
theorem, 97, 142 '
Hilbert space, 23, 24 (§ 10)
Hélder inequality, 37, 46
Homeomorphism, 4
Hull, 56
Hull-kernel topology, 56, 60
Idempotent, 101 4
reducible idempotent, 10%;,\
Identity, added to an aﬁlg'g fa, 59
modulo an ideal, 58
Integrable function (and set), 34
Integral, 30 O
bounded, 342>
on Cartes,‘\ahproducts, 44
the Haaf\integral, 115 (§ 29)
Interiopgd
Invatiant subspace, 125
Inversion theorem, 143
Involution, 28, 87
Irreducible idempotent, 102
Irreducible representation, 163

Kernel, 56

Laplace transform, 74, 179
L_hbounded function, 33
Linear functional, bounded, 18

. _-fﬂinear-fﬁh‘éﬁoﬁﬂ (C(m!)

extendable, 6 *

b positive, 96

unitary, 99
Linear order, 2~ o
Linear transformation, bounded, 15
self-adjoint, 95
" unitary, 127.129
L -monotone family, 33 -
Locally compact space, 7 O
Local membership in an ideal 85
IPnorm, 37, 46 K )
FP-space, 37 (§ 14) N\
complex 7P-space, 46~

Maximal ideal space, 54, 69 (§ 23)
Mean value of\yofi Neumann, 169

|| Measurable,Sef {and function), 36

l\’Ieasurg,@tl»

on A Cartesian product, 45
Migimal left ideal, 102
Minimal two-sided ideal, 102

4 Minkowski inequality, 38, 46
3} Modular fanction, 117, 132
Monotone family of functions, 32

[-monotone family, 33

Neighborhood, 4
symmetric neighborhood, 108
Norm, 13
Banach algebra norm, 16, 48
IP.norm, 37, 46
of a bounded transformation, 15
uniform norm, 9, 14, 39
Normal space, 6
Normed algebra, 16
Normed field, 68
Normed linear space, 13
Null function, 35
Null set, 35
Null space, 16

7

One point compactification,

Open set, 3
Orthogor;al complement, 25
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Parallelogram law,

Parseval’s equation, 155, 175

Partial order, 1

Plancherel theorem, 99, 145, 174

Poisson summation formula, 152

Pontriagin duality theorem, 140,
151

Positive definite element, 98

Positive definite function, 126, 142

Positive linear functional, 96

Primary ideal, 181

Projection, onto a
space, 11

in Hilbert space, 25, ’26
Pscudo-norm, 52 :

coordinate

Quotient space, 14, 110

Radical, 76

Radon-Nikodym theorem, 41
Real character, 132
Réduction theory, 175

Reflexive Banach space, 20 A\

Regular Banach algebra, 82 (§.3%)
Regular fanction algebra, 57\
Regular ideal, 58
Relative topology, 4 \\
Representation, irrgdugible, 163
of a group, 12\¢/
of an algcbfg\%
of an H%O ebra, 163

regular,

Scalar product 24

Sehyarz inequality, 24

Self-adjoint element, 90

Semi-direct product, 119

Semi-simple ring {(algebra), 62,
76

Silov's theorem, 151

Spectral norm, 75

Spectral theorem, 94, 95
Spectrum, 64

Stone’s theorem, 147
Stone-Weierstrass theorem, 9

“Sturm-Liouville differential equa-

tions, 182
Sub-basis, 3
Summable function, 31, 33
Summable set, 34
Symmetric nc1ghborhood 108 O

Tauberian theorem, 85, 1&8, ~180
Topologlcal group, 108
Topology, 3 R
compact, 5 &
completely Pégular, 55
HausdorffyS
hull-kefhel, 56, 60
logally’compact, 7
nératal, 6
: ».'gelﬁtive, 4
VT, 11
weak, 10
Triangle inequality, 13, 24
Ty-space, 111
Tychonoff theorem, 11

Uniform norm, 14
Unimodular group, 117
Unitary functional, 99
Urysohn's lemma, 6

Variations of a functional, 40

Weak topology, 10
on a conjugate space, 22
Weight function, 74, 180
Wiencr Tauberian theorem, 85,
148, 180

Zorn’s lemma, 2
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